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This report describes the work accomplished under the AFOSR grant F49620-92-J-0228P00002. The
research being accomplished under this grant is the investigation of the usefulness of additional information for
reducing noise in images. The use of information in addition to measured Fourier data to improve the resolution in
reconstructed signals has received a considerable amount of attention over the last five decades 1-3 . The kinds of
additional information typically used can be categorized in two ways: flexible constraints and rigid constraints.
Flexible constraints are usually used to reject solutions to the deconvolution problem (i.e., regularize the
deconvolution problem 4 ) which are unacceptable because they include nonnegligible high frequency structure
which results from noise rather than from signal. Because it is impossible to accurately reconstruct a space-limited
signal which is noisy from any finite portion of its Fourier spectrum due to the infinite extent of its Fourier
transform, these constraints are flexible since any reconstruction will be inaccurate (either from noise in the
Fourier data or from sidelobes due to the truncation of the signal's Fourier spectrum). This flexibility allows one to
trade off the structure and amplitude of noise in the reconstructed signal with the recovered resolution in the
signal. Rigid constraints, on the other hand, reflect information about the signal which any reconstruction is
required to possess. Thus, rigid constraints define an accurately known subset of the solution space that
reconstructed signals must reside in, and flexible constraints define unacceptable regions with fuzzy boundaries
within this subset.

Usually, flexible constraints are some form of smoothness constraint imposed on the reconstructed signal.
These types of constraints are included in a cost function definition weighted by a Lagrange multiplier which is
chosen to provide an optimum tradeoff between noise and resolution in the reconstructed signal relative to a chosen
definition of optimality. It is important to note that improving resolution in this context means decreasing the
point spread function width, not increasing the bandwidth of accurately known Fourier data. Using flexible
constraints to decrease the point spread function width does, in fact, increase the bandwidth of the Fourier data, but
without including rigid constraints (either explicitly or implicitly), the new Fourier data will be virtually all noise
and will result in increased noise levels in the reconstructed signal. Empirical evidence suggests that point spread
function widths can be decreased by a factor of two or more as compared to the point spread finction widths
corresponding to inverse Fourier transforming truncated Fourier data without imposing regularization constraints.
This useful decrease in point spread function width can be attributed to the human visual system's ability to reject
the random noise which accompanies decreased point spread function widths. The usefulness of flexible
constraints to improve image quality was not pursued under this grant

The other category of additional information, rigid constraints, includes information about the signal such
as its region of support and the fact that the signal is positive5 ' 6 , if appropriate. Many results can be found in the
literature which show resolution improvements of a factor of two or more when support and positivity (or,
equivalently, positivity) constraints are applied. However, these improvements are usually determined by reduced
point spread function widths and not upon the accurate extension of measured Fourier data beyond the maximum
measured bandwidth. Thus, these improvements more accurately reflect the tradeoff between noise and robustness
using flexible constraints rather than actual Fourier data extrapolation. It has been shown7 that accurate
superresolution as measured by the accurate extension of measured Fourier data is negligible for objects which are
at all resolved. As a result, superresolution is not part of the research focus of this project.

Another way rigid constraints can be used to improve image quality is by using them in order to reduce
the noise in the measured Fourier data which results in noise reduction inside the image support in the image
domain. This is a different issue than the one dealt with by using flexible constraints. With flexible constraints,
the data in the Fourier domain is filtered to reduce noise in the image domain, but the signal-to-noise ratio (SNR)
of the Fourier data remains unchanged at every frequency. As a result, less noise appears in the image domain, but
the resolution in the image domain decreases as a result, which is the previously mentioned tradeoff between
resolution and noise. With rigid constraints, on the other hand, it is possible to increase the SNR of both the
Fourier domain data and the image domain data with no decrease in resolution in the image. It is this aspect of
additional information that is being pursued under this grant

The primary focus of this research effort is the derivation of theoretical expressions which predict the
amount of noise reduction in the image domain as a result of using prior knowledge in addition to the measured
data. The theoretical emphasis was chosen because most of the theoretical work already accomplished with regard
to additional information is in support either of achieving superresolution or to determine convergence of
algorithms. However, virtually no work has been accomplished in the area of theoretical predictions of SNR
changes in the image domain or Fourier domain as a result of additional information. Nor has any work, to the
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author's knowledge, been published which has identified the essential mechanisms by which prior knowledge
causes noise reduction in images.

Because the work is theoretical, the decision of how to model the noise corrupting the image is critical.
The more general the noise model, the more types of data to which the theory applies, but the greater difficulty in
obtaining useful insight from the theory. The simpler the noise model is assumed to be, the more easily the theory
is interpreted. The compromise chosen in this research is to model the noise in the image domain at each location
x as delta-correlated noise with the possible exception of non-zero correlation with the noise at location -x. This
results in Fourier domain noise which is wide-sense stationary except close to dc. This noise model accurately
models both charge-coupled device (CCD) read noise and Poisson noise, which are two widely encountered noises
in imagery, especially from images of space objects collected by ground-based telescopes. This noise model does
"exclude W noise in images which have had any sort of blurring function deconvolved out of them. The act of
deconvolution can be viewed as a special type of convolution, and convolution results in correlated image domain
noise. Unfortunately, the theory is quite complicated for correlated noise, and that can hinder the usefulness of the
theory as a guide for how to optimally include additional information. As a result, the approach taken in this
research effort is to use the results from uncorrelated noise models to guide the results for correlated noise.
Quantitative results are obtained for Fourier-domain wide-sense stationary noise, and qualitative results are
obtained for more general noise statistics.

The rest of this report summarizes the work accomplished under this grant. Section 2 contains the work
achieved in regards to using support as a constraint, section 3 contains the work achieved with positivity as a
constraint, section 4 contains the work accomplished using prior high-quality image data as a constraint, section 5
discusses the application of the theory to images collected on telescopes using adaptive optics to remove
atmospheric blurring, section 6 summarizes the publications resulting from this research, and section 7 contains
conclu•ions. Appendices A-E contain copies of papers either to be published as part of the work under this grant
or to be submitted. The paper in appendix A is the result of work accomplished under an AFOSR lab task at the
Phillips Laboratory just prior to the work accomplished under this grant. The research into using additional
information for error reduction started with this work and thus it is included for completeness.

2. SUmN=r as a onstraint
The research on using support as a constraint is complete. Appendix B contains a paper that appeared in

the January 1994 issue of the Journal of the Optical Society A which contains the results from the work. The
results will be summarized in this section.

The noise model used for these results is generalized delta-correlated noise as described in section 1, with
one simplification. In the Fourier domain, the Fourier transform of the noise n(x), (NrNi), has the following
properties:

(Nr(ui)Nr(u 2 )) = Rr(ul -u 2 )+Rr(ul +u 2 )

(Ni(u 1)Ni(u 2 )) = Ri (u, - u 2 )- Ri (u1 + u2 )

(Ni(ui)Nr(u 2 )) = Rir (un - u 2 ) + Rir (un + u2 )

For simplicity and clarity, the terms which are a function of ul+u2 are neglected because their contribution is
primarily around dc. This results in noise in the Fourier domain which is wide-sense stationary. In addition, the
cross-correlation between the real and the imaginary terms are also neglected purely for simplicity and clarity.

Now assume that the variance of the real part of the measured Fourier data is less than or equal to the
variance of the imaginary part. Because the results are completely symmetric for the case where the variance of the 0
imaginary is less than or equal to the variance of the real part, no loss of generality occurs. In the paper,
theoretical results are derived which predict the change in image domain noise variances when the following 0
algorithm is employed: (1) inverse Fourier transform the measured Fourier data, (2) apply support constraints, (3) ......
Fourier transform, (4) replace the real part of the support-constrained Fourier estimate with the measured data, but
keep the imaginaM components unchanged, (5) go back to step I and repeat until the noise is minimized inside the
support constraint. The primary reason this algorithm was chosen is that it allows an iteration by iteration analysis
of the variances in the support-constrained image and Fourier data. A summary of the theoretical results, , Cooes
confirmed by computer simulation, is as follows: Doil un r
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(a) As long as the real part of the measured Fourier data is not completely noise-free, minimum noise is
achieved inside the support constraint in the image domain after only a finite number of iterations. Beyond this,
the noise increases.

(b) The noise in the symmetric part of the support constraint is unaffected by the application of support
constraints. Only the noise in the asymmetric part is affected. Thus asymmetric support constraints are the only
type which can achieve noise reduction inside the support constraint.

(c) If Rr=Ri, no noise reduction is possible inside the support constraint. This .- se is particularly
important because this is true for both CCD read noise and Poisson noise.

(d) Rr must be less than 60% of Ri for noise reduction to be possible inside the support constraint. This
result is independent of the noise-free object.

The proposed algorithm was compared with a standard convex projections algorithm, where the Fourier domain
convex set was defined as the region in the Fourier domain where the support-constrained Fourier data stayed
within ±I of the measured data. The results were as follows:

(a) The convex projections algorithm always resulted in increased noise inside the symnmetric part of the
support constraint, while the proposed algorithm did not affect the noise in this region.

(b) In the asymmetric part of the support, the proposed algorithm had comparable or better performance
than the convex projections algorithm if both algorithms were stopped at the point of minimum noise.

(c) The point of minimum noise when using the convex projections algorithm was at the same point as
for the proposed algorithm. Beyond this, the noise inside the support constraint increased. It appears that there is
a fundamental property being demonstrated here. The convex projections approach assumes that the correct
convex sets can be generated. Then the best image reconstruction must reside in the intersection of these convex
sets. However, it appears that with noisy data the convex set generated to constrain the region that the support-
constrained Fourier data can reside in does not intersect the convex set generated by the support constraint, in
general. It should be possible to generate a convex set from the measured Fourier data large enough to have an
intersection with the support constraint convex set, but there will be little or no image domain noise improvement
in this case because the Fourier domain convex set is so large. In spending more time looking into the literature, it
turns out that the vast majority of convex projection papers assume noise-free data, or at least that the convex sets
can be generated accurately. It is especially misleading because the convex projections algorithm d= converge
when noisy data is used to generate the Fourier domain convex set -just not to the point of minimum noise! To
test things, I reran the convex projections algorithm with the Fourier domain convex set generated with both the
correct mean and variance. I started the algorithm with the measured Fourier data, and then the convergence point
of the algorithm was the point of minimum noise. Thus it appears that algorithm performance is not a problem,
but rather noisy data inherently makes it impossible to generate consistent Fourier domain convex sets which,
when of reasonable size, intersect the convex set generated from the support constraint.

3. Positivitv as aconstraint
The theoretical results which predict the usefulness of positivity as a constraint have been completed, and

verification of these results via computer simulation has been accomplished. The same noise model as in Section 2
was used, with some modification as discussed below. The theoretical results assume that the algorithm of section
2 is used, where the support constraint is replaced by the positivity constraint (that is, all negative values in the
image are zeroed out at each iteration). A list of the results obtained is as follows:

(a) Positivity behaves as a signal-dependent support constraint. Because of this, more assumptions are
needed in regard to the noise properties in order for reasonably uncomplicated theoretical results to be derived.
Thus, the noise is as discussed in the introduction with the addition of the requirement that the noise n(x) be
gaussian for every x. This allows the joint probability density functions to be generated that are necessary to
theoretically predict the behavior of the noise from iteration to iteration.

(b) As for support, noise reduction in the image domain is only possible in the asymmetric part of the
positivity-induced support constraint No noise reduction occurs in the symmetric part of the positivity-induced
support constrain
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(c) The main difference between the results using positivity versus using support as a constraint is that
the positivity-induced support constraint changes size on each iteration, in general.

(d) Although the results are not completely symmetric, similar noise reduction is possible for either the
real part of the measured Fourier data more noisy than the imaginary, or vice versa.

(e) The ability to reduce noise inside the object support via the positivity constraint is a function not only
of the noise properties but also of the magnitude of the noise-free object. This again is a reflection of the fact that
the constraint is signal-dependent, while support is not.

(f) The noise outside the support constraint is reduced but not eliminated.
(g) The image data SNR must be approximately I or less for both positivity and support, used together as

constraints, to produce a noticeable difference from just using support as a constraint.

A draft of a paper which contains the details of the positivity results is in Appendix C.

4. Prior high-quzlity image data as a cQnsraint
Recently, it has been proposed8 that perfect knowledge of part of an image could be used to decrease noise

in the measured image outside of this region of perfect knowledge. This partial perfect knowledge could be
obtained by either prior high-quality image data or by computer modeling of the object. This constraint was
investigated during the grant and these results were generalized to allow the prior knowledge to be noisy as long as
the noise is much less than the noise in the measured data. It was shown that prior high-quality partial knowledge
behaves effectively as a support constraint As a result, all the conclusions from the support part of this research
apply in determining the effectiveness of using prior high-quality image data as a constraint. In particular, for
wide-sense stationary Fourier domain noise, the differences in the variances of the real and imaginary parts of the
measured data must differ by more thal 60% for noise reduction to occur, and the noise reduction occurs only in
the asymmetric part of the support constraint.

A draft of the paper which contains the details of these results is in Appendix D.

5. SIuMprt constraints_ aplied to imaneeM collected using adantive o~tics
Work has been completed in applying these theoretical results to telescope imagery which have used

adaptive optics (AO) to help compensate for the atmosphere9 "12 . The noise statistics have been derived for both
the low and high light levels. In the low light level regime, the noise is due to photon noise and CCD read noise.
As mentioned in section 2, no noise reduction is expected using support as a constraint in this case since these two
types of noises result in effectively wide-sense stationary Fourier domain noise with the variances of the real and
imaginary parts of the noise equal. In the high light level regime, the noise is due to imperfect atmospheric
compensation, assuming that the CCD read noise is negligible in this case. The noises in this case are not wide-
sense stationary, so the previously derived theory cannot be quantitatively applied. However, it can be used to
make qualitative judgments on the effectiveness of support constraints for noise reduction. The mechanism by
which support results in noise reduction inside the support constraint is through increasing some of the variances
of the iterated Fourier data beyond that of the measured Fourier data. For wide-sense stationary noise, this only
results in noise reduction in the asymmetric part of the image because variance increases occur only because of the
coupling of the real and the imaginary parts of the Fourier data by the asymmetric part of the support constraint.
No variance increases occurred because of correlating measured real data with itself or measured imaginary data
with itself. However, for non-stationary noise, variance increases are possible by both correlating real (imaginary)
data with real (imaginary) data as well as coupling real and imaginary data together. In this case, it is necessary to
determine not only the "size differences" of the variances of the data, but also the correlation of the noises.

A standard approach to improving image quality is to deconvolve out the blurring function caused by the
telescope/AO and reblur the image with a point spread function which has more resolution associated with it. In
this case, even in the low-light regime the noises become non-stationary, so exact theoretical predictions of error
reduction become very difficult. However, qualitative results can be predicted from the wide-sense stationary case.
As for the high-light level case, the key is the correlation of the sizes of the variances of the data and the
correlation of the noises.

In Appendix E, the details of the analysis for AO data is presented. It is shown that, for reasonably
resolved images, the noises corrupting the Fourier data are highly-correlated in the high-light level case, and thus
little or no noise reduction is possible. In the high-light level case, the variances of the real and imaginary parts of
the Fourier domain noise vary quite significantly, so more noise reduction occurs than for low-light level images.



However, because the noises are so highly correlated, variance reductions in the support of the image still only
averaged 10%. In the low-light level case, the variances of the real and imaginary parts of the Fourier domain
noise are virtually identical, so very little noise reduction is expected to occur even though the noises can be highly
uncorrelated.

An important result of this work is that involving the structure of the noise in the reconstructed images. It
was shown that, if the iterated Fourier data near the edge of the measured data region is not strongly constrained to
match the measured data, the correlation effect of support constraints correlates in the zeros outside the measured
data region and significantly distorts the iterated data. This distortion does not just result in noise increases in the
image domain, it can result in obvious artifacts in the reconstructed images. As shown with computer simulations
and with field data, when support constraints were enforced using a cost function approach instead of a convex
projections approach, these image domain artifacts showed up as decreased energy in the dim parts of objects and a
concentration of energy into small regions. This is especially important because it is exactly this sort of behavior
which leads people to claim that superresolution is occurring! For star fields, one expects bright points on dark
backgrounds, and this is exactly how this artifact can manifest itself. However, computer simulations were run
using extended objects, and thus this energy concentration effect is obviously demonstrated to be algorithmic
artifacts rather than improved resolution. It appears likely that this sort of artifact can show up more consistently
when excessive amounts of superresolution are attempted.

This work is being accomplished in collaboration with Captain Mike Roggemann, who is an assistant
professor of physics at the Air Force Institute of Technology, Wright-Patterson AFB, OH 45433. In addition, this
work (along with all the work being accomplished with this grant) is being accomplished with the end purpose of it
being applied to data collection methods being developed by people in the Advanced Imaging Division, Phillips
Laboratory, Kirtland AFB, NM. The point of contact there is Richard Carreras, PI/LIMI, Kirtland AFB, NM
87117-6008.

6. Chronological list of publications and conference papers
C.L. Matson and M.C. Roggemann, "Noise reduction in adaptive optics imagery with the use of support
constraints," to be submitted to Applied Optics and to be presented at the SPIE conference on advanced telescopes,
March 1994
C.L. Matson, "Error reduction in images using high-quality prior knowledge," to be submitted to Opt.Eng. and to
be submitted to SPIE conference on image processing, July 1994
C.L. Matson, "Positivity and its role in error reduction in images," to be submitted to J.Opt.Soc.Am.A. and to be
submitted to a conference on inverse problems
C.L. Matson, "Variance reduction in Fourier spectra with the use of support constraints," to appear in the
J.Opt.Soc.Am.A, January 1994
C.L. Matson, "Fourier spectrum extrapolation and enhancement using support constraint," to appear in the IEEE
Trans. Signal Proc., January 1994
C.L. Matson, "Variance reduction in Fourier spectra and their corresponding images via support constraints," Proc.
SPIE, vol.2029, July 1993
C.L. Matson, "Fourier spectrum extrapolation and enhancement using support constraint," Proc. SPIE, vol.1767,
July 1992

7-._concluion
The results of the research under this grant have been theoretical predictions of the usefulness of three

types of prior information (support, positivity, and high-quality prior image data) for noise reduction inside the
support of an object. Because previous work showed that superresolution has a negligible effect on image quality
for images which are at all resolved7 , the focus of this work has been on noise reduction in the measured Fourier
data. It has been shown that the fundamental way these types of prior knowledge work to reduce noise in images is
by correlating adjacent Fourier spectra elements. As a result, the noise corrupting the measured Fourier data has to
satisfy two qualitative properties for significant noise reduction to occur: (1) the correlation width of the noises
must be much less than the correlation imposed by the prior knowledge, and (2) the sizes of the noise variances
inside the imposed correlation region must be quite dissimilar. For symmetric support constraints, the correlations
only occur between adjacent real or adjacent imaginary components of the Fourier spectrum. For asymmetric
support constraints, correlations are also induced between the real and imaginary parts of a Fourier spectrum
element, as well.
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Quantitative theory was derived for wide-sense stationary Fourier domain noises using an algorithm
which allowed a linear analysis to be accomplished. In this case, the magnitude of the real and imaginary
variances are independent of frequency, so the only mechanism for noise reduction is the dissimilarity of the
magnitude of the real and imaginary variances. As a result, noise reduction only occurs in the asymmetric part of
the enforced support constraint produced by using positivity, true support, or prior high-quality image data as
constraints.

This theory was used as a quali ative guide for non-stationary Fourier domain noises for images collected
on telescopes with adaptive optics for removing atmospheric distortion. Support was used as a constraint. In the
low-light level case, with the telescope blur function deconvolved out of the images, it was predicted qualitatively
and shown via computer simulations and field data that essentially no noise reduction occurs because of correlation
of the sizes of the noise variances in the Fourier domain, even though the noises can be quite uncorrelated. In the
high-light level case, the magnitudes of the real and imaginary noise variances were shown to be quite dissimila',
on average, but the noises were so highly correlated relative to the correlation width imposed by support constraints
that again little noise reduction occurred, although more occurred than in the low-light level case.

Many other types of prior knowledge can be used in addition to the ones looked at in this research3 .
However, support and positivity are the most widely used and undoubtedly the most widely recognized as the most
general and powerful constraints. Because of the work accomplished under this grant, it is expected that
essentially all prior knowledge will function to produce correlations between Fourier spectrum elements as the
mechanism for noise reduction in images. As a result, the results presented above should generalize in a
straightforward way to other types of prior knowledge.

The most important result to come out of this work is that it is the Fourier domain noise properties which
dictate the effectiveness of prior knowledge to improve the quality of images. As a result, in a qualitative sense,
one should be able to predict a priori whether or not prior knowledge will result in significant noise reduction in
images merely by determining the noise properties. This can be accomplished easily via computer simulations,
especially if the noises are too complicated for their properties to be derived analytically, as for adaptive optics
noises.
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The use of support constraints for improving the quality of Fourier spectra estimates is discussed in this paper. It is
shown that superresolution is an additive phenomena which is a function of the correlation scale induced by the
support constraint and is independent of the bandwidth of the measured Fourier spectrum. It is also shown for
power spectra that support constraints, due to the enforced correlation of power spectra, reduce the variance of
measured power spectra. These theoretical results are validated via computer simulation in the area of speckle
interferometry, with very good agreement shown between theory and simulation.
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The use of inrmation in addition to measured Fourier data to improve the resolution in reconstructed
signals has received a considerable amount of attention over the last five decades1 ,2,3. The kinds of additional
information typically used can be categorized in two ways: flexibie constraints and rigid constraints. Flexible
contraints are usually used to reject solutions to the deconvolution problem (i.e., regularize the deconvolution
problem4 ) which are unacceptable because they include nonnegligible high frequency structure which results from
roise rather than from signal. Because it is impossible to accurately reconstruct a space-limited signal which is
noisy frm any finite portion of its Fourier spectrum due to the infinite extent of its Fourier transform, these
constraints are flexible since any reconstruction will be inaccurate (either from noise in the Fourier data or from
sidelobes due to the truncation of the signal's Fourier spectrum). This flexibility allows one to trade off the
structure and amplitude of noise in the reconstructed signal with the recovered resolution in the signal. Rigid
constraints, on the other hand, reflect information about the signal which any reconstruction is required to possess.
Thus, rigid constraints define an accurately known subset of the solution space that reconstructed signals must
reside in, and flexible constraints define unacceptable regions with fuzzy boundaries within this subset.

Usually, flexible constraints are some form of smoothness constraint imposed on the reconstructed signal.
These types of constraints are included in a cost function definition weighted by a Lagrange multiplier which is
chosen to provide an optimum tradeoff between noise and resolution in the reconstructed signal relative to a chosen
definition of optimality. It is important to note that improving resolution in this context means decreasing the
point spread function width, not increasing the bandwidth of accurately known Fourier data. Using flexible
constraints to decrease the point spread function width does, in fact, increase the bandwidth of the Fourier data, but
without including rigid constraints (either explicitly or implicitly), the new Fourier data will be virtually all noise
and will result in increased noise levels in the reconstructed signal. Empirical evidence suggests that point spread
fumction widths can be decreased by a factor of two or more as compared to the point spread function widths
corresponding to inverse Fourier transforming truncated Fourier data without imposing regularization constraints.
This useful decrease in point spread function width can be attributed to the human visual system's ability to reject
the random noise which accompanies decreased point spread function widths.

The other category of additional information, rigid constraints, includes information about the signal such
as its region of support and the fact that the signal is nonnegative5 '6 , if appropriate. Many results can be found in
the literature which show resolution improvements of a factor of two or more when support and nonnegativity
constraints are applied. However, these improvements are usually determined by reduced point spread function
widths and not upon the accurate extension of measured Fourier data beyond the maximum measured bandwidth.
Thus, these improvements more accurately reflect the tradeoff between noise and robustness using flexible
constraints rather than actual Fourier data extrapolation. Furthermore, algorithm results from which these claims
are derived usually come from testing the algorithms with finite sums of point sources. As will be shown,
superresolutiom can be achieved quite easily using support constraints with point sources because of the small
space-bandwidth product that results from typical point source support constraints. Another result that will be
shown is that superresolutio using support constraints is additive; that is, a finite (small) amount of Fourier
spectrum superresolution can be accomplished using support constraints, and this superresolution is independent of
the bandwidth of the measured Fourier data if the support constraint is based upon the size of the object. Thus,
achievable superresolution as measured by accurate extension of measured Fourier spectra is merely a small
fraction of the bandwidth of measured Fourier spectra for images which are at all resolved, rather than being a
multiplicative phenomena which is a function of the measurement bandwidth.

Another way that support constraints can be used to improve measured Fourier spectra is by decreasing
the variance of the measurements through enforcing correlations among the Fourier data. Typically, Fourier
spectra are measured pointwise without including correlation among the Fourier spectra datapoints. Applying
support constraints is equivalent to enforcing Fourier domain correlations which causes interpixel averaging, and
ths averaging reduces the variance of the measurements. In this paper, mathematical expressions are derived
which predict the degree of variance reduction as a function of the relative correlation of the noise and the support
costraint correlation for power spectrum estimation. To demonstrate the validity of the expressions, computer
simulation results are presented for the case of estimating the power spectra of two dimensional objects through
atmospheric turbulence, and achieved variance reductions are compared to theoretical predictions. The
organization of the paper is as follows: section 2 contains mathematical results which predict the achievable
supeeolution using support constraints, section 3 contains mathematical results predicting the variance reduction
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in mesured power spectrum data using support constraints, section 4 has results from the computer simulation,
and conclusions can be found in section 5.

2. uona
Consider the following one-dimensional model relating the true object intensity distribution o(x) and the

measured image intensity distribution i(x):

a/2

i(x)=2fo fo(4)sinc{2fE(x-4)}d* (1)
-M/2

This model corresponds to perfect knowledge of the true object Fourier spectrum inside the frequency range [-f0,fo]
and zeroing it out everywhere clse. The image is then obtained by inverse Fourier transforming this truncated
spectrum and zeroing out the resulting image intensity distribution outside the known support region [-cj2,a/21.
Although this model ignores noise, the effects of noise will be discussed shortly.

The true object intensity distribution o(x) can be recovered exactly from Eq.(1) for noise free data since
the operation shown in Eq.(l) is invertible (although the inverse in not continuous). A convenient conceptual
approach to accomplishin5 the inversion is by decomposing both i(x) and o(x) into infinite sums of prolate
spheroidal wave functions'. Let Von(x) be the nth prolate spheroidal wave function (defined on [-W2,ci/21)

corresponding to the space-bandwidth product 2afo and let Vn(x) be the extension of Nan(x) to the interval

(-oo). Then, because i(x) is bandlimited, it can be expressed as

i(x) = i c.Wn(x) (2)
n-0

where each coefficient cn is the projection of i(x) onto Vn(x) and is given by

C. = !i(4)V.(()d4 (3)

In the same way, because o(x) has finite support, it can be expressed as

o(x)= Xdnvan(x) (4)
n=O

and the expansion coefficients dn are given by

ct/2

where the Xn are the eigenvalues of the operator given by Eq.(l), and thus l/n are the eigenvalues of the inverse
operator. Using these decompositions, it can be shown that5 o(x) is !iven by

OMx)= .V.(x) (6)
n-0 K
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The inverse of the operator described by Eq.(l) exists because all of its eigenvalues are greater than zero, but the
inverse is not continuous because the limit point of the eigenvalues is zero. As a result, if any noise exists at all,
the infinite limit in Eq.(6) must be replaced by some finite number N, where N is determined by the signal-to-noise
ratio (SNR) of the measured data. Therefore, o(x) can be approximated by5

N

o(x)- I ..r-V=x) (7)

Although Eq.(7) avoids noise amplification by truncating the series shown in Eq.(6), other approaches can be
taken5 which attenuate the effect of the decreasing eigenvalues instead of truncating the series.

The key to understanding achievable superresolution is understanding the dependence of the magnitude of
the eigenvalues kn upon fo and a. It has been shown8 that the eigenvalues are bounded above by one for all n and
are greater than approximately 0.1 for n•.2afo. Beyond this value of n, the eigenvalues fall off quickly at a fairly
constant rate such that Xn/%n+I is approximately equal to ten. Therefore, assuming a moderate SNR, the
maximum size that N in Eq.(7) can be without magnifying the noise excessively is 2afo. It has been shown9 ,10
that the nth prolate spheroidal wave function results in an image domain resolution comparable to a sine function
of frequency (n+l)/2a in terms of the average distance between zero crossings. As a result, the spatial frequency
fm that corresponds to N=2afo is given by

fm= (2af, +l)/2a (8)
= f, + I/ 2a

Recall that fo is the maximum spatial frequency at which measured Fourier data exists. Therefore, the use of
support constraints results in superresolution of this measured data by an additive amount of 1/2a. The additional
amount is 25% of the main lobe of the sinc function which is the Fourier transform of the support constraint, and
the superresolution term is independent of fo. Thus, superresolution via support constraint enhancement is
additive and is negligible for images which are at all resolved as will be shown. This result is reasonably
independent of the SNR of the measured data. Because the eigenvalues drop off so rapidly, a factor of ten increase
in SNR is required to increase N by one. Even if it is possible to increase the SNR by several orders of magnitude,
the result is still an additive superresolution increase, not a multiplicative one.

Consider now using support constraints on a point source. Because the support of a point source is zero,
by definition, support constraints are usually derived from the point spread function corresponding to the
bandwidth of the measured Fourier data. In particular, a reasonable support constraint is obtained by setting the
support width equal to the width of the main lobe of the point spread function. For the case of using a filter which
is one inside [-f0 ,fM] and zero elsewhere, the point spread function main lobe width is given by 1/fo, and thus
affi1/fo. Substituting this expression into Eq.(8) results in

fm =f,+l/(2/fo) (9)
= fo + f, /2

Now the achievable superresolution is a function of the bandwidth of the measured Fourier data because the
support constraints were based upon the bandwidth of the Fourier data, and results in a 50% increase in bandwidth
regardless of fo. Since most algorithms include regularization along with support constraints, the resolution as
measured by point spread function width can improve by a factor of two or more beyond this 50% improvement as
well. Thus, it can be seen that support constraints applied to point source images along with regularization
constraints can decrease point spread function widths in recovered imagery by a factor of two or more. However,
this apparent improvement must be kept in perspective. By choosing a=1/fo, the space bandwidth product equals
two independent of fo, and thus N in Eq.(7) is always equal to two. Therefore, the only reason the increase in
resolution appears large because it is being compared to such a small amount of measured spatial frequency
information in terms of the space bandwidth product.
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The point source case can be extended to analyze the effect support constraints have upon resolved objects.
Let the resolved object be X point sources separated from each other by the Rayleigh resolution distance. This is
equivalent to saying that there are X resolution cells in the image. Then a=(X+l)/(2fo), where the support region
is defined as the distance between the first zeros of the point spread function on either end of the resolved object.
Substituting this into Eq.(8) gives

I
fmn ---fo
f 2[(X + l) / 2f. (10)

=f x+ f

It can be seen that the superresolution term decreases as the support increases. For example, if there were 9
resolution cells in the image, the amount of superresolution would be 10%. If there were 99 resolution cells in the
image, the amount of superresolution would be only 1%. This shows that superresolution is negligible for objects
which are at all resolved.

An extensive analytic and computer simulation study was recently accomplished 1I to explore the
usefulness of support constraints to both fill in holes in a modulation transfer function (MTF) as well as to
extrapolate Fourier data beyond the maximum measured Fourier data. Least squares and minimum variance
estimators were evaluated as well as a CLEAN algorithm in conjunction with support constraints. The object to be
imaged in the study was assumed to be windowed white noise with variance a,2, and white noise was added to
imaged object with variance 02. The data were assumed to have a SNR of over 300, where the SNR was defined
as (yx2/1n 2 , which is sufficiently high to allow N=2cdfo+l in Eq.(7) instead of the previously assumed N=2afo. As
a result, the superresolution term in Eq.(8) becomes 1/a instead of l/2a. In the study, a wide variety of support
constraints were used, and the error at each spatial frequency between the true object spectrum and the recovered
object spectrum was calculated for each support constraint. The results confirmed that the ability to derive Fourier
information in regions where no data is available depends upon 1/a. In particular, it can be shown from the results
in the study that the reduction in quality of the extrapolated Fourier data is well parameterized by 1/a, both in the
holes of the MTF as well as beyond the cutoff spatial frequency of the MTF.

3. Variance Reduction
Although support constraints do not allow useful superresolution to occur for well resolved objects, they

can be useful in reducing the variance of measured Fourier data. In this section, theoretical results will be derived
which predict the variance reduction in measured Fourier data resulting from applying support constraints. For
simplicity, the theory will be developed for power spectrum estimation.

Let i(x) and I(u) be Fourier transform pairs, where x and u are n-dimensional spatial and spatial frequency
vectors, respectively, and i(x) is real. Also, let the autocorrelation support constraint be given by w(x). Then, by
definition, it follows that

i(x)*i(x) = w(xxi(x)*i(x)] (11)

where * denotes autocorrelation. Fourier transforming both sides of Eq.(l 1) results in

iI(u]2 = jW(4I(u- _2dt (12)

where W(u) is the Fourier transform of w(x). It can be seen from Eq.(12) that the power spectrum of i(x) at any
spatial frequency point u is related to the power spectrum at every other spatial frequency point via the convolution
operation. In essence, Eq.(12) shows that applying support constraints results in weighted interpixel averaging
with the weights given by the Fourier transform of the window function. Let ile(u)12 be the pointwise estimated
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power spectrum, and let 11s(u), 2 be the improved power spectrum estimate which results from applying support
constraints to lo,(u)12 . Then, at each spatial frequency u, it follows from Eq.(12) that

lI.(u)12 = JW(4I.(u-_ 2 d4 (13)

The variance of 1ls(u),2, var(Is(u)12 ), is given by

vaII,(u))= <(k(u 2  >- < II(uA >2

0= jw ( djW(ýJc(U_ C 2 dC> - < jW(4jIe(u_4j2d4>< j W(ýJIc(U_2 dC>

SfW(4)W(C)[<jI,(u-4j2jI.(u-A2 > - <jI.(u-4 2 ><ll,(u-_ 2 >>ldEd (14)

where the angle brackets denote expectation. Furthermore, assume that IIe(u)12 is well modeled by

i.(uA2 =Io(uA2+n(u) (15)

where P(u)p2 is the trUe object power spectrum and n(u) is zero mean wide sense stationary noise with variance
equal to 02, and thus it follows that varflle(u)12 } = y2. Substituting Eq.(15) into Eq.(14) gives

0var(I,~(u)I 2 ) = 02 JJW(•)W(•) Ra(•-• €l (16)
00

where R(•-0 = <n(u-4)n(u..O> and Rn(O) = o2. It can be seen that var{l15(u)12} is equal to var{I1e(u)12 }
multiplied by an integral factor which determines the amount of reduction in variance caused by the application of
support constraints.

Two asymptotic cases will be analyzed to help gain an understanding of what Eq.(16) means in terms of
variance reduction. Consider first the case where the noise autocorrelation function is much broader than the
Fourier transform of the support function. This is equivalent to assuming that Rn(4- ) _ o2 for all values of • and

Sfor which the functions W(t) and W(O are significantly nonzero. In this case, Eq.(16) can be approximated by

-02ffW•W•).d (17)

= 2

Thus, there is essentially no variance reduction from applying support constraints if the noise correlation is much
broader than the Fourier transform of the support constraints.
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Now consider the other asymptotic case where the noise autocorrelation function is much narrower than
the Fourier transform of the support function. This case is more easily analyzed by using a change of variables in
Eq.(16), which results in

00

Vrl.U ) = (12 JJ -+)W (4ýR ý d~dt
-0 J 2"' 2 y2 (8

Because Rn( is much narrower than either W(.) term, the C dependence of the W(.) terms can be neglected. This
gives

varWI 5(u)A2 ) _ 02 JW(4)W(4) R.(0C)

-- (19)
= -02 1W(4)2d&jRf-l)dC

The second integral term in Eq.(19) is independent of the support constraint size, while the first term, by Parseval's
theorem, is the area of the supporL This shows that var{1ls(u)12 ) decreases as the support area decreases, and
eventually asymptotes to zero as the support area goes to zero. Thus, the amount of variance reduction depends
both upon the support constraint area and the relative correlation of the noise corrupting the measured Fourier data
and the correlation imposed by the support constraints.

An area of research in which support constraints are used quite often is the area of spodde
interfermmetry12. Therefore, the theoretical results developed in this section will be analyzed for the specific case
of estimating the power spectrum of an object through atmospheric turbulence. The average power spectrum of the
object multiplied by the telescope/atmosphere power spectrum transfer function, <IIq(u)I2>, is calculated by

M< ll=(U..,M t:iJm(UJ2_-N.] (20)

where M is the total number of frames of data, Dm(u) is the Fourier transform of the mth frame, and Nm is the
number of photons in the mth frame. This estimator assumes that the estimation process is shot noise limited, and
thus it is only necessary to subtract Nm from each frame to obtain an unbiased estimate of the power spectrum.

Under the standard assumption of isoplanicity, it follows that <Ile(u)12> is given by

<IJ.(uJ 2 > = 1O(uf <r(u) 2 > (21)

where O(u) is the true object Fourier spectrum and <I[(u)[2> is the power spectrum transfer function of the
telescope/atmosphere system normalized to one at dc. An estimate of the true object power spectrum, IOe(u)12, is
obtained by dividing both sides of Eq.(21) by <f(u)12 >, which yields

< (u <I(u 2 > (22)

S=
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When the estimation process is shot noise limited, in the low light level regime, and for spatial
fhluencies sufficiently large that effects of the "seeing spike" are negligible, it has been shown 13 that the
autocovariance of <lle(u)12 > is given by

< Ji.(4fp.(C2 >_ <[iI(4A ><ji.(CAI > = 10(4_C2 < k(4_CA2 > (23)

Notice that the power spectrum noise correlation depends only upon the difference of 4 and C and is a function of
the tu object power spectrum and the telescope/atmosphere power spectrum transfer function. Although
<11(u)12> is mogt accurately calculated by solving a four-dimensional integral equation, a reasonably accurate
simplification is given by14

< k(u)2 > = [Af + -- + Bf] (24)
4

Th coefficients A and B are given by

A =TQ(u)exp(-q(-)i)
ro

B -- 0.4355(D)2TD(u)[1.+ L38(r- )°4 x (25)

where ro is the Fried parameter which provides a measure of the correlation scale of the atmosphere, TD(u) is the
diffraction limited incoherent telescope transfer function, D is the telescope diameter, X is the observational
wavelength, and q is a function of D/ro and can be approximated by

1

0.17514-0.000078(D)
ro

for 30 < D/ro < 170. As D/ro approaches infinity, Eq.(24) does not hold and q approaches the more well known
constant 6.88. Also, this approximation for q becomes less accurate the smaller D/ro becomes 14 , with an
inaccuracy of approximately 10% for D/rt=30. For typical values of ro (- 10cm at A,=550nm) and D (Im to 4m),
when observing in the visible wavelengths, the dominant effect governing the correlation scale in Eq.(23) is the
exponential term in factor A. Under these conditions, if the support of the true object is much smaller than the
seeing disk, which is defined as Vro, the resulting variance given by Eq.(14) will approach zero. If the support of
the object is much bigger than the seeing disk, applying support constraints will result in very little reduction of the
variance. Although the power spectrum term IO(u)12 in Eq.(23) provides some decorrelation for large objects, and
thus slows down the increase in variance as the support increases, eventually var{l1s(u)12) asymptotes tovar{ e(u)h2}

Because Oe(u)P2 , and not .le(u)I2, is what is estimated in speckle interferometry, it is necessary to
determine the covariance of IOe(uNL from the covariance of Ile(u)12. It is easy to show that

< o (t ><2 ><I(-2 >

The effect the nonstationary tems have upon the variance reduction integral can be determined by substituting
Eq.(27) into Eq.(14), which gives
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@0

var(l.(u)X2 ) = JfW()w(M ) O (- ) - 2> (28)4,[(U _ 4Xt2 ><lI(u- _ )2 >

Because <t(uX2> is a slowly varying finction for the frequencies for which Eq.(23) is valid, and the numerator is
a strong function of (4-0J, both terms in the denominator of the integrand are essentially independent of 4 and
and can be brough outhside of the integral, which results in

@0

var(111(u) = 2 ff W(4)W(C)O(4- 2 dC>& (29)<x(u e2 >2 0
-- OO

This equation will be used for comparing the computer simulation results in the next section to theoretical
predictions.

4. mm m uaion Results
To determine the accuracy of the theoretical predictions developed in section 3, a computer simulation

program was used to generate sequences of atmosphere and shot noise corrupted images. Average power
spectrums of these images were calculated using Eq.(20), and the atmosphere/telescope attenuation effects were
removed from image power spectrums using Eq.(22), where estimated system power spectrum transfer functions
were obtained by using an unresolved star as the true object in the computer simulation. The parameters for the
unresolved star simulation run were chosen so that the estimated system power spectrum had a much higher SNR
than the estimated image power spectrum, where the power spectrum SNR was calculated as the sample mean
divided by the square root of the sample variance at each spatial frequency. This was done so that the variances of
the estimated object power spectrum points were a function only of the image power spectrum estimate. Sample
variances of the power spectrum estimates were also calculated for use in the deconvolution algorithm.

The first step taken to validate the theoretical expressions was to compare the predicted power spectrum
correlatio (Eqs.(23)-(26)) against both computer simulated and field data. The field data used was collected on
the (unresolved) single star Zeta Delphinus using a photon counting camera from the Stanford Center for Space
and Astrophysics 1 5 mounted on the Kit Peak Steward Observatory 2.3m telescope. The observing wavelength
was 550=m and the spectral bandpass was 30nm. There were an average of 292 photons per frame and 2500
frames were used in estimating the correlation coefficient of the power spectrum correlation. Extensive analysis 1 6

of the data resulted in an estimated value for ro of 10.5cm. As noted in section 3, the power spectrum correlation
coefficient depends only upon the difference of spatial frequencies, not their actual values. As a result, the
correlation coefficient curve for the estimated power spectrum of Zeta Delphinus was calculated using sample
statistics for several different center spatial frequencies and the results were averaged together. The center spatial
frequencies were chosen to be far enough away from dc that the assumptions used in deriving Eqs.(23)-(26) were
satisfied and such that the SNRs of the power spectrum at these frequencies were above one so that the estimates of
the correlation coefficients would be accurate. The resulting correlation coefficient curve is shown in Fig. 1 along
with the coefficient curves obtained by using the computer simulation code and by theoretical predictions. Notice
that the simulation and theoretical curves differ by a small amount at all spatial frequency differences, and that the
field data curve matches the simulation curve at small differences and the theory curve at larger differences. Thus
it can be seen that the field and simulation results match theoretical predictions quite well. However, since
theoretical predictions will be compared to simulation results, it is necessary to refine the parameters in the
theoretical expressions to provide a closer fit between simulation and theory. To this end, the q parameter was
chosen not on the basis of Eq.(26), but so that the theory curve would agree with the simulation curve. The best fit
was found to occur with q-4.6 as compared to the predicted value of 5.77, and Fig.2 shows the two curves. Notice
the very close match now between theory and simulation. As discussed in the previous section, Eq.(26) becomes
less accurate as D/ro decreases with a 10% mismatch for D/ro=30. For this simulation D/r0 =22, so the mismatch
between theory and simulation was expected.
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Next, an algorithm was developed to estimate the autocorrelation from its power spectrum while using
support constraints. A wide variety of algorithms have been proposed that could have been used3,4,17; however,
most of these algorithms mix the application of support constraints and regularization constraints in such a way
that it is impossible to determine which constraint caused the observed changes in the power spectrum. For this
reason, a simple deconvolution algorithm was devised. First, it was determined what portion of the power
spectrum was estimated with a SNR greater than one. Because only circulaly symmetric objects were used, this
region was defined as a circle centered at dc with a radius Rsnr dependent upon the SNR. The deconvolutions
were accomplished by minimizing the following cost function:

cost function = -1F(u (u.(u + [ +O(uAf (30)

where oe(u)2 is the sample variance of the power spectrum estimate at u, the minimization is accomplished over
all power spectrums IO(u)p2 whose corresponding autocorrelations are within the support given by w(x), and ca2 is

the average of the variances for ful=Ror and serves the function of a Lagrange multiplier for the regularization
term. The first summation is the data matching term, and the second summation is the regularization term.
Notice that the regularization process only involves spatial frequencies at which no data matching is to occur, and
thus the effect of regularization is decoupled from the effect of support constraints except for support-induced
correlations near the boundary defined by RP... Therefore, by comparing the recovered power spectrum to the
measured power spectrum sufficiently far inside the circle defined by Rsnr so that support-induced correlations
involving spatial frequencies u for M>,snr are negligible, the improvement by using support constraints can be
calculated. In order to smooth the transition between the two summations, a filter F(u) was used to multiply the
measured power spectrum, and thus the sample variances must be multiplied by F(u)2. For these simulation
results, the smoothing filter F(u) was defined by

F(u) =JI(20A) (31)

where J1 is a Bessel function of the first kind, order one, and the scaling parameter B was chosen so that the first
zero of the filter occurred where the power spectrum SNR was approximately 0.5. This filter was chosen because
the inverse Fourier transform of F(u) has finite support, and thus support constraints can be applied in a manner
consistent with the cost fimcion.

The minimization of Eq.(30) was accomplished using an IMSL conjugate gradient routine with a user
supplied cost function and gradient. All the minimizations were given 300 steps. The cost functions were reduced
a factor of 20 on average from beginning to end, and the norm squared of the gradient always decreased at least six
orders of magnitude. The startmng point for the minimization was the inverse Fourier transorm of F(u)Oe(u)I2.
At the end of each minimization, the support-constrained power spectrum estimate ps(u)12 was divided by F(u)
and a sample variance at each spatial frequency was determined by calculating the mean square difference between
the true and estimated power spectrums. Because the noise processes and the true object power spectra were
always circularly symmetric, all the variances with the same spatial frequency magnitudes were averaged together,
which resulted in sample variances as a function of Jul. The same averaging was done for the sample variances of
pe(u)2, and the sample variances of 10s(u)12 for each lul were divided by the sample variances of pe(u)12. These
variance reduction factors were then averaged together to finally obtain a single number characterizing the
variance reduction that occurred as a result of applying support constraints.

For the first computer simulation comparison, an unresolved star was used for the true object. The
simulation parameters were as follows: ro0 1 lcm, D=2.3m, M=2000, and 200 photons/frame on average. An
estimated object power spectrum was calculated using Eq.(22), and then the deconvolution algorithm was used for
a variety of circular support constraints with diameters ranging from 0.35V/ro to 4.4Zro. The resulting variance
reduion factors can be seen in Fig.3, where a normalized variance of 1.0 indicates no variance reduction. Notice
how well theory and simulation results match for values of the support diameters which were less than 2.5V/ro .
For larger support diameters, the simulation results show a slightly larger normalized variance than theoretical
predictions, but the match is still quite good. One possible reason for the mismatch in this region is that the main
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lobe of the Fourier transform of the support constraint is only four to six pixels wide in this region, and thus coarse
sampling could be contributing to a higher variance. It can be seen that the normalized variance does go to zero as
the support diameter becomes small relative to the seeing disk diameter (and thus the noise correlation), and that
the normalized variance starts to asymptote to one when the support diameter is three times the seeing disk
diameter. Thus it appears, as expected, that the determining factor in the usefulness of support constraints is the
relative size of the noise correlation function in the Fourier domain and the main lobe of the Fourier transform of
the support function.

The second computer simulation comparison was accomplished to validate the theoretical expressions for
a resolved object. A case which is essentially opposite to the unresolved star case is that of an object which is a
uniform intensity disk. This object has a power spectrum whose falloff near dc is very steep, unlike an unresolved
star which has a constant power spectrum independent of frequency. By Eq.(23), the noise correlation should fall
off faster than for an unresolved star, and thus the normalized variance should rise slower as the support size
increases than for the unresolved star. However, a uniform intensity disk has zeros in its power spectrum, so a
point source with 10% of the intensity of the disk was added to remove these zeros without greatly affecting the
shape of the disk power spectrum near dc. This allowed the sample variance reduction calculations to proceed
more smoothly. Next, a series of computer simulations were accomplished for disks with diameters ranging from
0.25)Jro to 2X/ro. The deconvolution algorithm was run for each of these cases, with support constraint diameters
ranging from 0.6)Jro to 4.4Zro, where the increase in support constraint diameters reflects the fact that the
autocorrelation support is twice the diameter of the object, and the addition of a small guard band resulting from
the convolution of the support with the inverse Fourier transform of F(u). The results can be seen in Fig.4, where
again there is very good agreement between theory and simulation. Notice that, compared to the unresolved star
case, the rise in the normalized variance is slower, but eventually the normalized variance approaches one as well.
The theory and simulation curves don't match as well as for the unresolved star case in the region where the
support diameters are less than 2.5)Jro, although the difference is small. A probable reason for the mismatch in
these cases is that the theoretical curve assumes perfect disks, while the simulation results used discretized
versions, and for small normalized support diameters the discrete approximation to disks is not extremely accurate.
This was not a problem for the unresolved star case because the power spectrum was one at all spatial frequencies
and thus did not suffer discretization problems.

The improvement in the SNR of power spectrum estimation as a result of applying support constraints is a
function of the square root of the normalized variance. For an object whose autocorrelation support is the size of
the seeing disk, an SNR improvement of approximately two is achieved, which indicates that large improvements
in SNR using support constraints are not realistic for objects which are reasonably large. Another interesting point
is that the SNR properties of power spectrum estimation in speckle interferometry get worse as ro decreases, but
the improvement in power spectrum SNR achieved by applying support constraints increases as ro decreases.
Thus, the use of support constraints helps offset the effects of increased atmospheric turbulence.

5. rhins£m
It was shown that superresolution using support constraints is an additive process, with the amount of

achievable superresolution equal to 25% of the main lobe width of the Fourier transform of the support function
when the measured Fourier data have a moderate SNR. For objects which are at all resolved, this amount of
superresolution is virtually unnoticeable. It was also shown that support constraints are useful in reducing the
variance of the measured Fourier data, with the amount of variance reduction dependent upon the relative size of
the noise correlation and the correlation enforced by the support constraint.

Because all superresolution approaches attempt to derive additional Fourier data from measured Fourier
data, it is clear that enforced correlations are the mechanism for superresolution. As a result, all superresolution
should be additive in nature, and thus it is not realistic to expect significant amounts of accurately extrapolated
Fourier spectra regardless of the constraint applied.
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AFOSR/NM, Bolling Air Force Base, Washington, D.C., and by the U.S. Air Force Phillips Laboratory, PLILMI,
Kirtland AFB, NM. The author also wishes to thank E.K Hege and J.S. Morgan for supplying the field data on
Zeta Delphinus.
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Variance Reduction in Fourier Spectra and their Corre nding Images via Support Constraints
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Abstac

The use of support constraints for improving the quality of Fourier spectra, their associated images, and the
relationship between the two domains is discussed in this paper. Theoretical relationships are derived which
predict the noise reduction in both the image domain and the Fourier domain achieved by single and repeated
application of support constraints for the case of wide sense stationary Fourier domain noise. It is shown that the
application of support constraints can increase noise inside the support constraint if the application is not done
correctly. An iterative algorithm is proposed which enforces support constraints in such a way that noise is never
increased inside the support constraint and the algorithm achieves the minimum possible noise in a finite number
of steps.
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1. JtouMIon

The use of information in addition to measured Fourier data to improve the resolution in reconstructed
signals has received a considerable amount of attention over the last five decades 1 -7. In particular, support
constraints have been used in a variety of algorithmsI, 2 both to achieve superresolution and to reduce the noise
corrupting the measured data. In the area of superresolution, it has been shown that support constraints allow
some spectral extrapolation to occur but the amount of superresolution is less than a resolution element for data
with moderate signal-to-noise ratiosý. These superresolution results have been shown to be fundamental limits
imposed by the quality of the measured data. In addition, the use of support constraints has been shown to reduce
the noise in measured power spectra7 . However, this work did not discuss the effect that the noise reduction in the
power spectrum had upon its inverse Fourier transform, the autocorrelation function.

In this paper, the work discussed in Ref. [71 is extended from power spectra to Fourier spectra which are
corrupted by wide sense stationary noise. Furthermore, the image domain consequences of applying support
constraints in a repeated manner while requiring the Fourier spectra of the support constrained images to stay close
to the measured data is discussed. It is shown that the use of support constraints can result in increased noise in
the image domain inside the support constraint if the support constraints are not enforced in an optimal manner.
In this paper, an algorithm is proposed which enforces support constraints in such a way that noise inside the
support constraint is never increased and, when noise reduction is possible, achieves the minimum noise in a finite
number of steps.

The outtine of the paper is as follows: Section 2 contains the theory for variance reduction in the Fourier
domain as a result of one application of support constraints, section 3 contains results for variance reduction in
both the Fourier and image domain as a result of repeated application of support constraints, section 4 contains
simulation results, and the conclusions are in section 5.

2. Fourier Domain Variance edtionn
This section contains results which predict the variance reduction in the Fourier domain as a result of one

application of support constraints. Let o(x) and O(u) be Fourier transform pairs, where x and u are n-dimensional
spatial and spatial frequency vectors, respectively, and o(x) is real. Also, let the support constraint be given by
w(x), which also is real. Then, by definition, it follows that

o(x) = w(x)o(x) (1)

Fourier transforming both sides of Eq.(1) results in

O(u)=W40u-4d (2)

where W(u) is the Fourier transform of w(x). It can be seen from Eq.(2) that the Fourier spectrum of o(x) at any
spatial frequency point u is related to the Fourier spectrum at every other spatial frequency point via the
convolution operation. In essence, Eq.(2) shows that applying support constraints results in weighted interpixel
averaging with the weights given by the Fourier transform of the window function. Let Oe(u) be the pointwise
estimated Fourier spectrum, and let Os(u) be the improved Fourier spectrum estimate which results from applying
support constraints to Oe(u). Then, at each spatial frequency u, it follows from Eq.(2) that
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O.(u)= JW(4)o.(u-4)dk

=fW,(4)0.(u-4)dk- J Wi (4)Oei(u - 44d+ j ,W(4)0.(u - 4)d4 + j WA()0(u -)d1 (3)

where the subscripts r and i indicate the real and imaginary parts of the variables, respectively.
It is necessary to calculate the variance of Os(u) in order to determine the effect support constraints have

upon the measured Fourier spectra. Because Os(u) is a complex number for each u, it is necessary to calculate the
variance of both the real and imaginary parts. The variance of Osr(u), var(Osr(u)}, is given by

var(Ou(u)) a < [Or (u) 2 >- < O0.(u) >2

=< JW(A)O (u-)d4 jW(0O (u-0)dC>- < JW(4)O (u-)d.,>< J W(C)O.(u-0)dC >

*+ <jfw(0.(u4)4o ju fW((C)O.((u -d~dC-

0-2< fWr(t)Oc(u -t)dtfJW.(C)O.(u-ý)dý> + 2< fW (4)0, (u - )dt >< fJW.-()o.,(u - o)d>

= JW(A)W (+ 0 <O(u1- W)O(u - C> - < O r(u -4) >< Oe(U- C)>]&Ad

+ JJW(t)wi()4< o.(u-4)O.(u- )>-<O.,(u- ) >< Oo(u- C)>]1•AC

- 2 fJw,(t)wj(c)< Or(u- )O.u(u-C)>-<O.(u- )>< O (u- ) >]d~dC (4)

where the angle brackets denote expectation. Similarly, it follows that
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var(O., (U)} M <[O.,(U)p2 >-_< O'i(U) >2

= JJW,(4)W,('M< O.,(u-4)o• (u-0)> -< Oa(u -)>< o(u-)>]d4

0w

+ JJW 1 (t)Wi(tC< Off(u-4)Of(u-C)> -<Off(u-4)>< O.(u-t) >]dEdt

+ 2 f wr(t)Wi(•1I< O,(u- )O,(u- )> -< O,(u- ) >< O,(u- ) >]d~dt (5)

To analyze these equations further, more information needs to be known about Oe(u) in order that the expectations
in Eqs.(4) and (5) can be evaluated. Therefore, define

N,(u) = O(un)- (Of.(u)) (6)
Ni (u) = Oi(u)- (O0 (u))

where the complex noise (Nr,Ni) is a stochastic process which satisfies

(Nr(uI)Nr(U 2 )) = Rr(U! -U 2 )+Rr(ui +u 2 )

(Ni (un )Ni (u2 )) = Ri (un - U2 )- Ri (u, + u 2 ) (7)

(Ni(ui)Nr(U 2 )) = (Nr(u,)Ni(U 2))=O

This model for the noise is general enough to include both CCD read noise and Poisson noise. The restriction that
the covariance between the real and the imaginary is zero implies that the variance of the noise in the image
domain is an even function of x. This restriction is made for clarity and simplicity. Also, for clarity and
simplicity, the terms in Eq.(7) which are functions of ul+u2 will be neglected since, in general, their influence is
relatively minor for all frequencies except those near dc. This results in Fourier domain noise which is wide sense
stationary. Then, by substituting Eqs A6) and (7) into Eqs.(4) and (5) with this simplification, it follow that

vafrfO(u)) = ff[Wr(t)Wr(C)Rr(4- )+ Wi(t)Wi(C)Ri(t- )]dEAC (8)

var{O. (u)} = JJ[Wr(•)Wr(•)R ( - )+W (•)W (•)Rr(•-•)]d~d• (9)

There am several interesting asymptotic properties that Eqs.(8) and (9) exhibit. The first is that, as the
imaginary part of the window approaches zero, the variance reduction in the real (imaginary) part comes just from
averaging the real (imaginary) parts, and thus there is no crosstalk between the real and imaginary components.
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Two other asymptotic properties can be seen much more easily by rewriting Eqs.(8) and (9). Using the
convolution-multiplication relationship between the Fourier and inverse Fourier domains, it can be easily shown
that

var{O3 (u)} = ww, (x)t (x)dx + wo2(x);.(x)dx (10b)

where we(x) [=(w(x)+w(-x))/2] is the even part of w(x), wo(x) [=(w(x)-w(-x))/2] is the odd part of w(x), rr(x) is the
inverse Fourier transform of Rr(u), and ri(x) is the inverse Fourier transform of Ri(u). Furthermore, it will prove
usef to rewrite Eq.(10) in an alternate form. Let

w(x) = w (x) +-[w (x) + w. (x)]2 (11)
Wo w(x) w° (x)- w, (x)]

where ws(x) is the symmetric part of w(x), wa(x) [=w(x)-ws(x)] is the asymmetric part of w(x), and
w.a(x) = wa(-x). It is also easy to show that

W:(x) = w, (x) + 2-[w.(x) + w_.(x)] (12)
wo"(x) = 2-"w(x) +(-2)-n W, (X)

because the support functions ws, wa, and wa have no intersection. Then, by substituting Eq.(12) into Eq.(1O) and
by using the fact that ri(x) and rr(x) are even functions, it follows that

var{O1 (u)} = J;(x)dx + -1 [;(x)+l(x)]dx (13a)
w,(x) w,(x)

varO(u) = (x)dx + - rfi+r(x)]dx (13b)

w.(x) w.(x)

Notice that the variances of the real and imaginary parts are now expressed in terms of the noises in the symmetric
and asymmetric regions of the support function. This will be useful in the next section where image domain noise
reduction is discussed.

Consider now the case when the support becomes very large and the Fourier domain noise is not white
noise. For simplicity, assume that the support constraint is centered on the origin and expanded equally in all
direcions (this does nWt imply that the support constraint is symmetric, however). Then, as the support becomes
arbitrarily large, the integral over wa(x) will go to zero, ws(x) will be large enough so that rr(x) and ri(x) will be
essentially nonzero outside of ws(x), and then Eq.(13) becomes
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var{O. (u)} - fr;(x)dx = Rr(O) (14a)

var{O. (u)l - j (x)dx=Ri(0) (14b)

Thus, when the support constraint becomes arbitrarily large, no improvement is seen in the variance of Os(u) for
nonwhite noise. However, if the Fourier domain noise is truly white, then support constraints will always result in
variance reduction regardless of the size of the support constraint

The third, and final, asymptotic property occurs when the support constraint becomes arbitrarily small and
the Fourier domain noise is allowed to have any degree of correlation. Again assume that the support constraint is
centered on the origin. Then, as the support constraint gets very small, eventually rr(x) and ri(x) are
app.roxinmately constant and equal to rr(O) and ri(O), respectively, in the support region. Then Eq.(13) becomes

var{O.(u)1 - ;(O) Jdx + i[;.O)r,( ) Jdx (15a)
f 2

w,(x) w.(x)

var{Oi(u)} - ;-(O) Jdx + ljk;(O)+;,(O)] Jdx (15b)
w.(x) w.(x)

and so the variances approach zero as the support area approaches zero. From Eqs.(10)-(15), it can be seen that
one application of support constraints always results in some degree of variance reduction in the measured Fourier
spectra, and under the right conditions can drive the variances arbitrarily close to zero.

3. Image Domain Variance Reduction
All of the results derived in the previous section are theoretical predictions for variance reductions in

Fourier spectra resulting from a single application of support constraints in the image domain. However, it is
necessary to look at what happens in the image domain since the primary goal of using support constraints or any
other additional information is to improve the quality of the image inside the support constraint. Because of the
invertibility of the Fourier transform, all the Fourier domain variance reductions discussed in section 2 are purely a
result of zeroing out noise in the image domain outside of the known support. These variance reductions do not
improve the quality of the image inside the support constraints and, as such, do not achieve any image quality
improvement since it was already known that the image was zero outside the support. Therefore, a question
naturally arises: are there any circumstances in which support constraints can improve image quality inside the
support constraint? The answer is yes, and this section contains derivations which will specify what conditions are
necessary for this to occur. The first observation to be made is that, if no change in made in Os(u) prior to inverse
Fourier transforming, then reapplying the support constraint in the image domain is entirely redundant and no
further variance reduction will occur in the Fourier domain. Also, no change in image quality inside the support
constraint will occur. The question then arises, what would motivate changes in Os(u) prior to inverse Fourier
transforming?

To analyze this question in more depth, it is important to realize what information is available in the
Fourier domain. There exists measured Fourier data and also sample variances which provide a means to
determine the quality of the measured Fourier data. Clearly, if by applying support constraints, the variance of
0,(u) for all spatial frquencies is smaller than the variance of the measured Fourier data, then the measured data
should not be used to force a change in Os(u), and thus the application of support constraints cannot be used to
reduce the image domain noise inside the support constraint. Conversely, if by applying support constraints, the
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variance of Os(u) for some spatial frequencies is larger than the variance of the measured Fourier data, it would
make sense to replace those components of Os(u) with the measured Fourier data components. Only in this case
would it be possible to lower the noise levels inside the support constraint. Therefore, the next question is, when
would support constraints increase the variance of Os(u) for some spatial frequencies? To answer this question, it
is first necessary to determine under what conditions support constraints do not increase the variances of Os(u)
beyond the variances of Oe(u) for any spatial frequency.

First, assume that the window function is symmetric so that there is no imaginary part to W(u). Then
wa(x) is zero and Eq.(13) becomes

var{O, (u)} = f;(x)dx (16a)
w,(x)

var{Oj (u)} = f (x)dx (16b)

Because rr(x) and ri(x) are nonnegative functions, restricting the integration from all x to ws(x) will never cause
the variances to increase. Therefore, it is necessary to have an imaginary component to W(u) in order to have the
possibility of increasing some variances of Os(u) beyond those of Oe(u). This is equivalent to saying that the
support function must have some asymmetry. However, the conclusion that the support constraint must have some
asymmetry is a result of the noise being wide sense stationary. For nonstationary noise, this conclusion is not
necesarily valid.

The next case in which the variances of Os(u) will always be less than or equal to the variances of Oe(u) is
when the noises corrupting the real and imaginary parts of Oe(u) are identically distributed. In this case, Eq.(13)
becomes

var{O.(u)} = ;(x)dx=var{o.(u)} (17)
w(x)

It is clear that the variances of the real and imaginary parts are no greater than the variances of the measured data,
so again there will be no reason to modify O0(u) due to increased variances and thus the applied support
constraints will have no effect on the image inside the support constraint. However, this case does indicate under
what conditions there might be a reason to modify spectral points of Os(u) because they have higher variances than
Oe(u). That is, Eq.(13) indicates that the application of support constraints causes coupling of the noises between
the real and imaginary parts of •te spectrum which is due to the noise in the asymmetric portions of the support
constraint. If the noises are s-fifickntly different in magnitude, then the application of an asymmetric support
constraint will decrease the vamiuce of the imaginary part of Os(u) (the real part of Os(u)) but increase the
variance of the real part of 0,(u) (the imaginary part of Os(u)) beyond that of the measurements. Therefore, it
appears that the only time support constraints can be used to improve image quality inside the support constraint is
when either the real or imaginary component has a sufficiently lower noise variance than the other and the support
constraint is not symmetric.

To pursue this further, assume that the real part of Oe(u) is less noisy that the imaginary part. Because
both parts of Eq.(13) have the same form, these results will also apply to the case of the imaginary part being less
noisy than the real merely by interchanging the real and imaginary covariances. Therefore, it makes sense to
employ an iterative algorithm which replaces the support constrained real part of the Fourier transform with the
real pat of the measured Fourier data on each iteration while leaving the imaginary component unchanged. Thus,
the algorithm is as follows: (1) inverse Fourier transform Oe(u), (2) apply support constraints, (3) Fourier
transform, (4) replace the real part of the Fourier estimate with the measured data, but keep the imaginary
components unchanged, (3) go back to step I and repeat until the noise is minimized inside the support constraint.

Now it will be shown that, using this algorithm, that both the real and imaginary components converge
and what they converge to. First consider the imaginary part of the Fourier transform: after m iterations of the
algorithm, the imaginary component will be given by
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m-Ij1 r--

0.,O)(u)-- =7[w (xot'[O.(u)]j -jy 7wk(x)wo(xr [oo((18)
k,,O

where J and denote the Fourier and inverse Fourier transform operation, respectively. This result can be

derived by repeated application of Eq.(3). Using Eq.(18) and following the methods used to derive Eq.(13), it can
be shown that the variance of Osi(m) is given by

vad[O,i(.)(u) = J[w,(x)+ ,-,2 (w,(x) +w_.(x))];(x)dx

-!(W(X) W,(k)M l + I~ (W()WX)(x)dx4¼ k÷,

+j (,,(x)+w..(x))2 m w(x) +-2m- x-k(Wa(X ) +4 (()wx) [w,(x)-+ 2m krT(X+-(x)(x)dx

f;J(x)dx + f20 k+1(x)dx+-! M -1++ 2m-l-k I (x)dx (19)

w.(x) w,(x) kwx km)

where, in this equation and all following equations, the summation terms are zero if the upper limit is less than the
lower limit. Now, in the limit as m-+, the first summation approaches four, the second approaches zero, the
second integral goes to zero, and it follows that

var{O,(.)(u)}= J1(x)dx + 2 Jr,(x)dx (20)
w,(x) w,(x)

In a similar way, it can be shown that, after m iterations of the algorithm, the real part of the Fourier
transform is given by

m-2 . -
1

O ()=cwC(x)•-'[Off(u)J} +j •{wo(x)wm- (x)T-I [Oi(u)]j + • wk(x)w2(x))OYp . r(u)]j (21)

k--O

and the variance of Osr(m) is given by

var{O,.(.)(u)- = fI;(x)dx + f2(--2m);(x)dx
w,(x) W,(X)

+ +, I +12 k +1 + k 2m-3-k r(x)dx (22)
[2 8 k g 2 8 w 2 xk
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In the limit as m--)c, the first summation approaches one, the second approaches one half, the third approaches
zero, the second integral goes to zero, and it follows that

var{O.,..(u)}= J;(x)dx + 2 Jr(x)dx (23)
w,(x) w.(x)

It is interesting to note that Eq.(22) indicates that the variance of the real part of the support constrained Fourier
spectrum changes even though, on each iteration, the measured data replaces the support constrained real part.
This is due to coupling between the real and imaginary parts enforced by the support constraint.

Notice in the previous equations that the changes in the variances of the real and imaginary support
constrained components are due to changes in the noise in the asymmetric portions of the support constraint.
Furthermore, because the goal of applying support constraints is to minimize noise in the image, not the Fourier
spectrum, it is necessary to determine how the noise variances inside the support constraint in the image domain
change as a function of the number of algorithm iterations. To this end, let nm(x) be the noise in the image
domain after m iterations of the algorithm which results from the inverse Fourier transform of (Nr(m),Ni(m)).
Then it follows that <nm(x)> = 0 and that

< n.(x,)nm(X2 )> = < f[Nr(m)(ul) +jNi(.)(ul)]eJ 2mluldu f[Nr(m)(u 2 ) - jNi(.)(u 2 )]e-j2x2Ua2du 2 >

= [< Nr,)(u( )N(m)(U2 ) > + < N,)(u1 )Ni(m)(U 2 ) > -j < N(I.)(u )NK,)(U 2 )>

+j < Ni(m)(u )N,(m)(U 2 ) + 2*Xul¢-j2XK2U~du2duI (24)

After making a change of variables from ul to AU = (ul-u2), it follows that

<nm(xl)nm(X2)> = J 1[Rm()(Au)+Ri,)(Au)+jRiI(.)(Au)-jlRli(I)(Au)] ej 2 RXAUej 2 IXI-x2>J2d(Au)du 2

= - {R[Rm)(u) + Ri(m)(U) + jRir(m)(u) - jRri(m)(U)}8(xI - x2) (25)

where Rr(m) is the autocovariance of the real part of the Fourier domain noise, Ri(m) is the autocovariance of the
imaginary part of the Fourier domain noise, and Rir(m) and Rri(m) are the cross-covariances of the imaginary and
the real and the real and the imaginary parts of the Fourier domain noise, respectively, after m iterations. Rr(m)
and Ri-) can be obtained by generalizing Eqs.(19) and (22), and Rir(m) and Ri(m) can be derived from Eqs.(18)
and (21). Substituting these expressions into Eq.(25) gives
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am Y {R,(m)(u) + Ri(m)(U) + jRir(m)(U)- jRf(m)(U)}

=;(X) + ;(X)]W.(X) + 2(2 2 -);(X)w.(X) + kI 2-2 2m-l-k]()()
Ik=O k-m

-+ +.k=0 + - _ 2W(X)rr(X) (26)

and, as m-.4-0,

O2.(x)= [;(x) + ;(x)]w,(x) + 41(X)w.(X) (27)

Eq.(27) implies that the more asymmetric the object and the less noisy the real part of the measured
spectra, the lower the variance of the image domain noise inside the support constraint. If the support of the object
is completely asymmetric, then the noise in the image is completely determined by the noise in the real part of the
Fourier spectrum. Thus it could be construed that, if the object is moved off center sufficiently far, then support
constraints can be used to completely remove all the noise from the image if the real portion of the Fourier data
was noise free. This is true under the assumptions of the noise model used in the theoretical derivation. However,
if the object is not centered in the image plane, the assumption of uncorrelated real and imaginary noises is no
longer valid due to the induced tilt

The noise in the image domain within the support constraint is given by Eq.(26), and it is clear that the
noise within the symmetric portion of the support constraint is unaffected-by repeated support constraint
applications. However, the noise in the asymmetric portion is a function of the number of support applications. It
is not clear from Eq.(26) the number of iterations needed to minimize the noise inside the support constraint.
Therefore, to determine the number of iterations to reach the minimum noise level, it is necessary to calculate the
difference in the variances between the m and the (mn-b) iteration and determine when the difference stops being
negative and becomes positive. After some algebraic manipulation, the desired difference is given by

m(x)oa2=(x)=-- 5+ -+ I + (x)-12;(x) w.(x) ,m>4

2 I[( k=O k=-O )

=- .•-6[13r(x) - 3;(x)]w.(x) ; m3

16
1 -[5; (x) - 3;(x)Jw 8(x) ; m = 2 (28)
4

Notice that the only region in the image domain where variances are changing as a result of the algorithm is in the

asymmetric region of the support constraint Also notice that the term in Eq.(28) which causes .2(x) - c2_1(x)
to be negative, and thus decrease the error in the support constraint from the previous step, is ri(x) multiplied by a
constant factor. However, the positive term consists of rr(x) multiplied by an increasing function of m which

approaches - as m--)o, and thus o2(x) - oa2(x) becomes positive for some finite value of m as long as rr(x)>O.
This means that the number of iterations needed to achieve the minimum amount of noise inside the support
constraint is a finite number (for rr(x)>O) and increasing the iterations beyond this level will increase the noise. If
rr(x)=O, then the noise levels inside the support constraint decrease for every value of m and the minimum noise
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level occurs for m-o. If the ratio rr(x)/ri(x) is large enough, then W(x) - O2_,(x) will always be positive for
mare than one application of support constraints and there is no possibility of reducing the error in the image
domain inside the support constraint. The upper bound for rr(x)/ri(x) that allows a decrease in the image domain

variance via repeated applications of support constraints can be determined by setting 02 (x) - 02- 1 (x) equal to
zero for m-2 and solving for rr(x)/ri(x), which results in

r,(x) - 3 (29);(x) 5

Thus, if the noise properties are known, it can be determined a priori whether or not support constraints can be
used to lower the amount of noise inside the support constraint.

The results contained in Eqs.(26)-(29) reflect the variance properties of the noise in the image domain at
each point. However, in general rr(x) and ri(x) will have different functional forms, and thus the number of
iterations needed to minimize the variance in the image domain will be a function of x. Therefore, it is necessary
to calculate the integral of the variance of the noise over all x to determine the number of iterations required to
minimize the total noise in the image. This is easily accomplished by replacing all the functions of x in Eqs.(26)-
(29) with their integrals over x. In particular, it is easy to show that Eq.(29) becomes

J rr (x)dx
w.(X) = 3 (30)

fr;(x)dx 5
w.(x)

which determines the dividing line between support constraints being able to reduce noise inside the support
constraint or not relative to the total noise in the image domain.

All of the above results occur when the real part of the support constrained Fourier spectrum is kept equal
to the measured data while letting the imaginary become what the support constraints require. An obvious
alternative to this algorithm is to constrain both the real and imaginary parts of the measured Fourier data at each
iteration to stay within some region about its mean value, typically determined from the variances of the noises.
This has been the suggested approach to use when employing a convex projections approach to include additional
information8 ,9 . However, it will be shown via computer simulation in the next section that this modification to the
algorithm usually results in more noise than the original algorithm.

4. Coam=er Simulation Results
The first step undertaken in the computer simulation effort was to validate the theoretical derivations in

the previous section. To this end, an off-axis point source was used as the uncorrupted object It was then Fourier
transformed and zero mean gaussian complex white noise with real and imaginary variances or2 and 0i 2 ,

respectively, was added for various Or2 /Oi 2 ratios. This results in ri(x) - oi2 and rr(x) = Or 2 . Because the results
are completely symmetric for 0r2 > oi2, results for Or2 < ai 2 only are shown. In addition, because the noise is
delta-correlated, the terms in Eq.(7) which are functions of ul+u2 are zero except at dc. All simulations used the
mean of the measured Fourier data and the true (not estimated) variance of the noise to determine the Fourier
domain constraints.

For each dataset, the algorithm described in the previous section was used to apply support constraints
until the algorithm converged. The support constraint applied was a triangle which partially overlaps the origin
so that the area of the triangle which is asymmetric about the origin is 83% of the total triangle area. Sample
variances were calculated at each spatial frequency and at each point inside the support and averaged at each
iteration to provide sample variances of the support constrained Fourier spectrum and of the image before the real
part was replaced with the initial data. Fig. 1 shows the theoretical predictions and simulation results for the real
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part of the support constrained Fourier spectra, Fig.2 shows the same results for the imaginary part of the support
constrained Fourier spectra, and Fig.3 shows the total variance inside the asymmetric part of the support
constraint. The symmetric part is not shown because, as predicted by Eq.(28), it remains unchanged during the
repeated application of support constraints. Notice the close match between simulation and theory. It can be seen
in Fig.3 that there is no change in the variance between the first and second iteration for Or2 /Oi 2 =0.6, and then the
noise increases. This result confirms the theoretical prediction given by Eq.(29).

These results were obtained by constraining the real part of the support constrained Fourier data to match
the measured Fourier data at each iteration, but the imaginary part was left unconstrained. Next, these results were
compared to the results obtained by requiring both the real and imaginary parts of the support constrained Fourier
data to remain within a specified region about the measured Fourier data. Prior to implementing this modification
to the algorithm, the Fourier data was smoothed using the results of Eq.(16); that is, Eq.(16) predicts that the
result of applying a symmetric support constraint will be a decrease in the variance of both the real and imaginary
parts of the Fourier spectrum. Of course, this does not decrease the noise inside the support constraint in the image
domain, but it can be used to decrease the noise in the Fourier data before using it as a constraint. For this part of
the computer simulation, the smallest symmetric support constraint that included the actual support constraint was
calculated, the initial data was smoothed, and a reduced variance Os2 was calculated using Eq.(16). This smoothed
data with the refined variance estimate was then used for the initial data in the algorithm. Fig.4 compares the
results from the original algorithm and the modified algorithm for the case where ar 2/oi12-1 and where the Fourier
domain constraint was that the support constrained Fourier spectrum was required to stay with ±+o of the
smoothed data. Bounds of ±2+ and ±3a were also used, but the results were very similar to the Ilo case. The
result of running this modified algorithm until it converged was increased noise both in the symmetric and
asymmetric parts of the support constraint As predicted by Eq.(29), noise reduction is not possible for a noise ratio
of o2/Iai2=-. Notice that, for m>2, the modified algorithm resulted in lower noise levels inside the support
constraint, but it still increased the noise inside the support constraint.

The results from using the modified algorithm for the case of ar2/Oi 2 =0.6 (which is the borderline case
for noise reduction using support constraints) are shown in Fig.5. In this case, the modified algorithm resulted in
increased noise inside the support constraint if the algorithm was run until convergence is achieved, if, however,
the algorithm had been stopped at the second iteration, the modified algorithm resulted in slightly less noise than
the original algorithm. Once again, the modified algorithm resulted in increased noise in the symmetric part of the
support constraint

The third case to be looked at is for 0r2/1i 2=0.2. The results can be seen in Fig.6. Notice that the
original algorithm results in lower noise levels in the image as compared to the results from using the modified
algorithm. It is clear from looking at these three examples that, if the noise statistics are known, it can be decided
a priori whether support constraints will increase or decrease the noise inside the support constraint. If the noise
levels will decrease, then the original algorithm produces the best or comparable results as compared to the
modified algorithm as long as the iteration number for which the minimum is obtained is calculated and the
algorithm is stopped at that point. If the noise statistics are not known, the modified algorithm using the smoothed
data is the best compromise to using support constraints if one is unsure whether support constraints will result in
increased or decreased noise in the image. Although the modified algorithm does not achieve the minimum noise
in the image, in general, excessive noise in the image is also avoided.

As a final example, a satellite model was used as the true object. Fig.7 shows the model used, and Fig.8
shows the support of the satellite. The white region of the support is the symmetric region, and the gray region is
the asymmetric region. Zero mean white gaussian noise with a variance equal to 107 times the dc value of the
image was added to the imaginary part of the satellites Fourier transform, but the real part was kept noise-free.
From Eq.(29) it follows then that the minimum noise level is reached only at infinity. The noisy image is shown in
Fig.9, where the satellite image is completely masked by the noise. The original algorithm was run for 20
iterations, replaci the noisy real part of the Fourier transform of the support constrained image with the noise-
free data each iteration. The resulting image is shown in Fig. 10. Notice, by comparing Fig.8 with Fig. 10 that the
noise in the symmetric part of the image remained unchanged, while the asymmetric part of the image is now
essentially noise-free.
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Theoretical results have been derived which predict the effects of repeated applications of support
constraints in both the image and Fourier domain for the case of wide sense stationary Fourier domain noise.
These results assume that, for each iteration of the algorithm, the initially less noisy part of the Fourier spectrum
(real or imaginary) replaces the (real or imaginary) part of the support constrained Fourier spectrum. It was shown
that this algorithm converges, but the point of minimum noise is achieved for a finite number of iterations if both
the real and the imaginary parts of the measured Fourier data are noisy, and iterating beyond that point increases
the noise in the image. It was also shown that constraining the support constrained Fourier data to remain with
specified bounds of the measured data results in the comparable or higher noise levels in the final image than the
original algorithm when the algorithm is stopped at the point of minimum noise. This is due to the fact that
measured data will always have data points outside the ±la (or 2a, 3o, etc.) regions centered on the true values.
Thus, requiring the support constrained Fourier data to stay close to the measured data can result in mitigating the
variance reduction achievable by support constraints. Because the noise is assumed to be wide sense stationary, the
support constraint is required to have asymmetry and the noises corrupting the real and imaginary parts of the
measured Fourier data must be sufficiently dissimilar for noise reduction inside the support constraint to be
achieved.

A key result from this work is that enforcing support constraints can result in higher noise levels inside
the support constraint than before the constraints were applied if the algorithm is continued until convergence is
obtained. Another key result is that the point of minimum noise in the image domain is always reached before
convergence (for noisy Fourier data). This appears to be a fundamental property of noisy data. As a result, the
convex projections method should be used with caution. This is because the convex set which results from keeping
the support constrained Fourier spectrum within a region about the mean of the measured Fourier spectrum does
not intersect the convex set which results from applying a support constraint in the image domain, in general.
Although the set in the Fourier domain can be made large enough to intersect the support convex set, doing this
will usually result in a set so large that there is no change inside the support constraint resulting from applying
support constraints. A better approach than this is to use the algorithm proposed in this paper.

This research was funded by a grant from the U.S. Air Force Office of Scientific Research, AFOSR/NM,
Bolling Air Force Base, Washington, D.C. The research was also supported by the Advanced Imaging Division,
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Fig. 1. Variance of individual elements of the real part of the support constrained Fourier spectrum as a function of
the number of iterations for (a) ar 2/0i2 = 1, (b) r2/Oi2 = 0.6, and (c) Cr2 /Oi2 = 0.2. The solid lines are
theoretical predictions and the symbols represent simulation data points.

100

80

w60
u - (a)
C

20- 0(

20

(C)

0. 1 f I -I . . .
0 5 10 15 20 25

Number of Iterations

Fig.2. Variance of individual elements of the imainawry part of the support constrained Fourier spectrum as a
function of the number of iterations for (a) or2/0i 2 = 1, (b) yr2/ai 2 = 0.6, and (c) 0r2/0i2 = 0.2. The solid lines
are theoretical predictions and the symbols represent simulation data points.
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Fig.3. Total variance in the asymmetric region of the support constraint as a function of the number of iterations
for (a) rr2/ai2 = 1, (b) 0r 2/0i 2 = 0.6, and (c) COr2 /Oi2 = 0.2. The solid lines are theoretical predictions and the
symbols represent simulation data points.
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Fig.4. Variances for ar 2/0i 2 = I as a function of the iteration number. Curves (a) and (b) are the total variances
in the asymmetric region of the support constraint for the original algorithm and the modified algorithm,
respectively. Curves (c) and (d) are the total variances in the symmetric region of the support constraint for the
modified algorithm and the original algorithm, respectively.
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Fig.S. Variances for CY r 2Ai2 = 0.6 as a function of the iteration number. Curves (a) and (b) aie the total variances
in the asymmetric region of the support constraint for the original algorithm and the modified algorithm,respectively. Curves (c) and (d) are the total variances in the symmetric region of the support constraint for the
modified algorithm and the original algorithm, respectively.
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Fig.6. Variances for Cr2 /0i2 = 0.2 as a function of the iteration number. Curves (a) and (b) are the total variances
in the asymmetric region of the support constraint for the original algorithm and the modified algorithm,
respectively. Curves (c) and (d) are the total variances in the symmetric region of the support constraint for the
modified algorithm and the original algorithm, respectively.
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Fig.7. Uncorrupted satellite image.

Fig.g. Support region of satellite image in Fig.7. The symmetric part of the support is shown in white, while the

asymmetric part is shown in gray.
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Fig.9. Noise corrupted satellite image for ai2 =10 7 times the dc value of the image and r2 =00.

Fig. 10. Reconstructed satellite image after 20 iterations of the original algorithm.
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Abstra

In this paper, the role positivity plays in error reduction in images is analyzed both theoretically and with computer
simulations for the case of wide-sense stationary Fourier domain noise. It is shown that positivity behaves as a
signal- and noise-dependt support constraint. As a result, the mechanism by which positivity results in noise
reduction in images is by correlating measured Fourier spectra. Noise reduction occurs in the asymmetric part of
the positivity-induced support constraint when positivity is applied just as noise reduction occurs in the asymmetric
par of the true support constraint when support is applied. In addition, the positivity-induced support constraint
changes size, in general, for each iteration of the algorithm
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Noise reduction in images with the use of knowledge in addition to the measured data has received much
attention over the yearsI' 3 . Recently, a detailed analysis of how support functions as a constraint to reduce noise
inside the support constraint has been completed4 ,5 . It has been shown that, for wide-sense stationary Fourier
domain noise, support constraints can be used to reduce the noise inside the support constraint if the ratio of the
real and imagina•y Fourier data variances is sufficiently small or large. It has also been shown that support, for
this type of noise, does not result in noise reduction in the symmetric part of the support constraint, only in the
asymmeric pert.

In this paper, the same approach as in Ref.5 is taken to analyze positivity as a constraint for Fourier
domain wide-sense stationary noise. It is shown that positivity acts as a signal- and noise-dependent support
constraint Inside the asymmetric part of the positivity-induced support constraint, noise reduction is possible just
as when using support as a constraint. Inside the symmetric part of the positivity-induced support constraint, no
noise reduction is possible just as when using support as a constraint. In addition, noise reduction inside the
objects support using positivity is greater than when using the true support constraint in the high-noise
environment The paper is organized as follows: Section 2 contains the theoretical development, Section 3
contains the computer simulation results, and Section 4 contains the conclusions.

2. nM•
Let o(x) be the uncorrupted image and let i(x) be the measured image. Then i(x) is given by

i(x) = O(x) + n(x) (1)

where n(x) is the inverse Fourier transform of zero-mean wide-sense stationary noise (Nr(u),Ni(u)) whose second
moments satisfy

(Nr(ui)Nr(u 2)) = Rr(ul - u2)+Rr(ul +u 2 )

(Ni(u 1 )Ni(u 2 )) = Ri(u1 -u 2 )-R i(u1 +U 2 ) (2)

(Ni(u )N,(U2)) = (Nr(ui)Ni(u 2))=0

where the terms involving sums of spatial frequencies will be neglected since they only have an impact near dc.
This noise model is sufficiently general to accurately characterize CCD read noise and photon noise. Assume also
that the data was measured in the Fourier domain so that there exists both the measured data I(u), the Fourier
transform of i(x), and its variance, var(I(u)), at each frequency.

Next, an algorithm must be chosen which will be used to enforce positivity as a constraint while requiring
I(u) to remain close to the measured Fourier data in some sense in terms of var{l(u)}. Because the noise in the
Fourier domain is wide-sense stationary, the variance of both the real and the imaginary parts of I(u) will be
independent of frequency. Both because of ease of analysis and because it has performance comparable to or better
than a standard convex prjections6 " algorithm when using support as the image domain constraint for wide-
sense stationary noise, the following algorithm 5 will be used. Starting in the image domain and assuming that the
variance of the real part of I(u) is less than or equal to the variance of the imaginary part of I(u), (1) zero out all
negative values of i(x), (2) Fourier transform i(x), (3) replace the real part of the positivity-constrained Fourier
spectrum with the real part of the measured data, (4) inverse Fourier transform, and (5) start over with step 1 as
long as the noise has not been minimized yet. In Ref.5, it is shown that the minimum noise achieved inside the
support constraint occurs before the algorithm converges. However, this is not the case for positivity, in general.

In step one of the algorithm, the locations in which i(x) is zeroed out form a signal- and noise-dependent
support constraint In general, with each additional iteration of the algorithm, the signal-dependent support
constraint will change. As a result, the first step in analyzing the algorithm's performance is to determine how the
support changes on each iteration. Let wl(x) be the support constraint obtained during the first iteration of the
algorithm as a result of the zeroes that exist in i(x) and the zeroes that result from enforcing the positivity
constraint Furthermore, let i (x) be the image at the end of the first iteration, which is given by
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*i 1 (x) = -1[i(x) + i(-x)] + 1[w, (x)i(x) - w, (-x)i(-x)] (3)
2 2

where the first bracketed term is the inverse Fourier transform of the real part of l(u) and the second bracketed
term is the inverse Fourier transform of the imaginary part of I I (u), the Fourier transform of i 1 (x). To determine
the new signal-dependent support constraint to be used for the second iteration, w2 (x), obtained by imposing
positivity upon il(x), it is useful to separate the image domain into four non overlapping regions: (1) wl(x)=wl(-
x)=l, (2) wl(x)•wl(-x)=O, (3) wl(x)=O and wl(-x)=l, and (4) wl(x)=l and wl(-x)=0.

Re"on 1 after one iteration: because wi(x)-wl(-x)=l, Eq.(3) becomes

il(x) = 1[i(x) + i(-x)] +1[i(x)- i(-x)]
2 2 (4)

=i(x)

Since wl(x)=1, i(x) is nonnegative and thus w2 (x)=wl(x)=l. This means that once points in the image domain are

in region 1, they stay there.

Region 2 after one iteration: because wl(x)=wl(-x)=0, Eq.(3) becomes

il(x) = -[i(x)+i(-x)] (5)
2

Because wl(x)=Wl(-x)=O, both i(x) and i(-x) are either zero or negative. Thus it follows that il(x)!90 and thus
w2 (x)=wl(x)=O. As for region 1, once points are in region 2, they never leave.

Reion 3 after one iteration: because wl(x)=0 and wl(-x)=l, Eq.(3) becomes

i,(x) = [i(x)+ i(-x)]-1i(-x)
2 2 (6)

=- i(x)
2

Since wl(x)=O, i(x)•O, and thus w2 (x)=wl(x)=O. Furthermore, once a point's support function becomes zero, it
stays zero. However, region 3 will change in size since region 4 changes in size, as shown next.

Region 4 after one iteration: because wl(x)=l and wl(-x)=O, Eq.(3) becomes

il (x) = -1[i(x) + i(-x)] +lji(x)

2 1 2 (7)

= i(x)+-I(-x)
2

In this region, il(x) could be either positive or negative, depending upon the relative size of i(x) and i(-x). If
il(x)>O, then w2 (x)-wl (x)=1. If, however, il(x)•o, then w2 (x)=O. Thus this point would move from region 4 into
region 2. Thus, it can be seen that after one iteration, the support size has not increased in size and probably has
decreased in size.

Following the same steps as above, it can be shown that, after n iterations, in(X) is given by
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1 1

i. (x) = 1[i(x) + i(-x)] +![w,(x)i._,(x)- Wn(-X)in_,(-x)] (8)
2 2

where i,,(x) depends upon the region it is in. In addition to finding in(x), it is necessary to find the sizes of the
regions and total mean square error (MSE) in the regions to determine how positivity is affecting the noise
characteristics of the iterated data.

Re I after n iterations: because wn(x)=wn(-x)=l, Eq.(8) becomes

in ( 1 = 1[i(x)+ i(-x)] +l[i(x)- i(-x)]

2 2 (9)
= i(x)

So, after n iterations, region I remains unchanged in size and the image remains unchanged. The size of region I
can be found by multiplying the area of the image by the joint probability that i(x)>O and i(-x)>O, which is given by

P{i(x)>0 and i(-x)>0} = P{o(x)+n(x)>0 and o(-x)+n(-x)>0} (10)

= P{n(x) > -o(x) and n(-x) > -o(-x)}

In addition, the mean square error (MSE in the region is given by

,= [i(x)-o(x) 2 = XE{n2(x)n(x)>-o(x)andn(-x)>-o(-x)} (11)
regionrIwiolI

Notic that both the size of region I and the error in region I are unaffected by the application of positivity and

thus are independent of the number of iterations. This is the same as for support constraints5 .

2 after n iterations: because wn(x)=wn(-x)-O, Eq.(8) becomes

SW1 = l[i(x) + i(-x)] (12)
2

The elements in this region that were in this region after one iteration are still here, sic positivity is not changing
the value of in(x). As discussed above, points from region 4 can migrate in here. However, once the points make
it in here, they stay here. The size of the region is found by multiplying the area of the image by the probability of
being in this region which is given by

P{w,(x)f=i0 and wn(-x)=0}= P{w(x)=0 and w(-x)=0}

+P{points from region 4 moving to region 2 after n iterations}

= P{n(x)<-o(x) and n(-x)<--o(-x)}+[P4(o)-P4(.)] (13)

where P4(n) is the probability that a point is in region 4 at the nth iteration. The MSE in this region is given by

MSEr* 2(n)= Xo 2 (x (14)
rqim 2(n)

and changes, in general, on each iteration.
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ReCion 3 after n iterations: because wn(x)=O and wn(-x)=l, Eq.(8) becomes

in M = I i(x) (15)

and this region is decreasing in size since region 4 is. The probability that a point is in this region after n
iterations is given by

P{w.(x)=0 and Wn(-X)1}= P{w(x)=0 and w(-x)=1}

-P{points from region 4 moving to region 2 after n iterations}

P{n(x)<-o(x) and n(-x)2-o(-x))-[P4(0)-P4(.)] (16)

and the total MSE in this region after n iterations is given by

MSErCV1 3(n)= 0O2 (x) (17)
rfiw 3(n)

Reqion 4 after n iterations: because wn(x)=l and wn(-x)=O, Eq.(8) becomes

n

in(X) =i(X)+i(X 4. 1 (18)

As for the previous regions, the size of this region is equal to the area of the image times the probability that a
point is in this region which is given by

P{Wn(x) = 1 and wn(-x) = 01 = P{in(x)> 0 and in(-x) 0}

=P n(x) + n(-x)4I >_-o(x)-o(-x) _L and n(-x)<-0o(-x) (19)
PI k-l W~

and the MSE in this region after n iterations is given by

n (20)
=X E{n(x)+[n(-x)+o(-x)]4 w n(x)=l and Wn(-X)=OI• Ell k=• F

All the above equations assumed that the real part of the noise was less noise than the imaginmary, and so the real
part of the iterated Fourier data was constrained to match the measured data, while the imaginary pan was left
totally unconstrained. If the imaginary part is less noisy than the real part of the measured Fourier data, the
imaginary would be constrained and the real would be left totally unconstrained. Because the positivity constraint
dramatical1y alters the dc value of the image, the algorithm which constrains just the imaginary can allow large
error to occur. As a result, when the imaginary is less noisy than the real, all the imaginary values of the iterated
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data are constrained to match the measured data; but, in addition, the dc value of the iterated data is constrained to
stay within ±2o of the measured dc value. This modification of the algorithm makes theoretical predictions
difficult since the algorithm has become nonlinear. Therefore, for this case only computer simulations will be run.

Summarizing, positivity behaves as a signal- and noise-dependent support constraint which changes, in
general, on each iteration. No noise reduction occurs in the region of the symmetric positivity-enforced support,
and the only noise reduction that occurs outside the positivity-enforced constraint results from zeroing out negative
numbers. Effectively, the noise changes that occur inside the object's true support occur in the asymmetric part of
the positivity-constrained support, both because noise values change on each iteration and also because the size of
the positivity-enforced asymmetric support changes in size. Thus, the role positivity plays in error reduction is
very much like support constraints, where correlation of Fourier spectra bring about noise changes in the
asymmetric part of the support constraint. The major difference between positivity and support is that positivity-
enforced support constraints can change each iteration, while support constraints do not.

3. Computer simuion iesults
In this section, computer simulation results are presented both to validate the theoretical results presented

in Section 2 and to show graphically the effect positivity has on noise properties. Because probabilities and
expected values must be calculated for sums of random variables, the noise corrupting the image was chosen to be
the sum of two gaussian stochastic processes ne(x) and no(x) which satisfy

(n.(x,)n.(x 2 )) = oe.8(x1 - x2 )+o28(xI +-x2 )
(n0 (x,)n 0 (x2 )) = o.28(x 1-x 2 )-0o26(x +x 2 ) (21)

(n.(xl)no(x 2 )) = 0

in order to make calculations tractable. This form of image domain noise results in Fourier-domain noise which is
effectively wide-sense stationary except at dc. If a! is less than 62o, the real part of the Fourier data is less noisy
than the imaginary, and vice versa. In addition, since the statistical quantities are dependent upon o(x), for
simplicity o(x) was chosen to be constant inside a triangular support region and zero outside.

The first computer simulations used an image with an average SNR of 0.5 inside the object's true support.
In Figures I and 2, normalized mean square error plots inside the object's true support constraint are shown for the

asymmetric and symmetric support regions, respectively, and or2 /a = 0.1. In Figures 3 and 4, the sa plots are

shown for all the same values except c. / ao = 10. In each figure, the MSE for a positivity constraint, support
constraint, and both positivity and support are shown. For the support constraint MSE determination, at each
iteration the image's negative values were zeroed before error calculations, but the negative numbers were restored
before the next application of support constraints. This allowed a more fair comparison between the three types of

constraints. For the positivity case, theoretical values determined from the results in Section 2 for o2 / 02 = 0.1
are also shown. Notice that in the asymmetric region of the true support positivity, support, and both positivity and
support all achieved approximately the same error reductions. However, in the symmetric region of the support
positivity with and without support constraints resulted in lower values than for support alone (where no noise
reduction occurre). This is due to negative image values inside the symmetric part of the true support constraint
resulting in a noise-induced asymmetric support, which results in reduced MSE. Also notice that using both
positivity and support as a constraint sometimes resulted in the same MSE plots as with just positivity or support
alone, and other times it results in MSE plots which were in between the error plots resulting from using either

suppfo or positivity alone. Notice that the results are quite similar for both o21ooa f 0.1and 2 1
Next, the simulations were nm for the same scenario as above except that the average SNR inside the

objct's true support was chosen to be 1. It can be seen from Figures 5-8 that positivity alone is becoming less
effective as a constraint when compared to support or both support and positivity. Finally, computer simulations
were run for an average SNR of 5. The results are in Figures 9-12, and it can be seen that positivity alone as a
constraint is much less effective than support, and when positivity and support are both applied the results are
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Figure 1. Norm~alzd MSE inside asymmetric part of objeIt's true support for SNR=0.5 .2 /,2=.1 Tedte
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line is for a support constraint, the dashed line is for both support and positivity, and the solid line is for positivity
alone. The tringles denote thereically calculated points for poitvty congmnt alon.
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Figure 2. Normalized MSE inside symmetric part of object's true support for SNR=0.5, 1210.2 =0.1. The dotted

line is for a support constraint the dashed line is for both support and positivity, and the solid line is for positivity
alone. The triangles denote theoretically calculated points for positivity constraint alone.
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line is for a support constraint, the dashed line is for both support and posilivity, and the solid line is for positivity
alone.
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line is for a support constraint, the dashed line is for both support and positivity, and the solid line is for positivity
alone.
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indistin le from using support alone. This is as expected since, with higher SNRs, the noise rarely results in
negative image values inside the true support, and so positivity has little impact on providing a support constraint.

An analysis has been provided which shows the effect that positivity has upon noise reduction in images
for the cawe of wide-sense stationary Fourier domain noise. It has been shown theoretically and with the use of
computer simulations that positivity as a constraint acts as a signal- and noise-dependent support constraint. There
are two mechanisms by which positivity causes noise reduction inside the true support of the object. The first
mechanism is noise reduction in the asymmetric part of the support constraint due to mismatches between the
variances of the real and imaginary noises corrupting the Fourier spectra. The second mechanism is that of
reducing the size of the positivity-enforced support constraint due to negative values in the image. Positivity has
been shown to be most effective for images with SNRs less than one, and essentially ineffective for SNRs greater
than five. The effect of positivity was compared to support via computer simulations, and it was shown that
positivity and support had comparable effect in the asymmetric part of the support, but positivity did better in the
symmetric part of the support for low SNRs and worse for high SNRs. Comparable results were obtained with

positivity, on average, for 2/ C2 2 / <ln >/1.
Because positivity behaves as a signal- and noise-dependent support constraint, it follows that positivity

works by enforcing correlations among Fourier spectra just as support does4,5. As a result, the noise correlation
properties are key to determining how effective positivity will be as a constraint.

This research was funded by a grant from the U.S. Air Force Office of Scientific Research, Boiling Air
Force Base, Washington, D.C.
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Figure 5. Normafized MSE inside asymmetric part of object's true support for SNR=l.0, a. . The dotted
line is for a support constraint, the dashed line is for both support and positivity, and the solid line is for positivity
alone. The triangles denote theoretically calculated points for positivity constraint alone.
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Figure 6. Normalized MSE inside symmetric part of objet's true support for SNR= 1.0, a. / o2 0.l. The dotted
line is for a support constraint, the dashed line is for both support and positivity, and the solid line is for postmty
alone. The triangles denote theoretically calculated points for positivity constraint alone.
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Error reduction in images using high-quality prior knowledge

Charles L. Matson
Phillips Laboratory/LIMI, Kirtland AFB, NM 87117
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Ab=

The use of information about an image in addition to measured data has been demonstrated to provide the
possibility of decreasing the noise in the measured data A new constraint, recently proposed, is that of perfect
knowledge of part of an image. In this paper, these results are generalized and the usefulness of this new
constraint to decrease noise outside the region of prior knowledge is shown to be a function of the measured data
noise-correlation properties. In particular, it is shown that prior high-quality knowledge is a generalization of
support constraints.

0
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The use of additional information for error reduction in images, either by superresolution or noise-
reduction in measured data, has received much attention1-6. The types of additional information include
information such as support regions, positivity, and energy constraints 3, as well as others. Recently, it has been
proposed 7 that pan of a image may be known exactly, and this can be used as a constraint to decrease nise levels
in the image outside the region of perfectly known data. In this paper, the results in Ref.7 are generalized and
made rigorous. It is shown that high-quality prior knowledge is a generalization of support constraints, and thus
the ability to reduce noise levels in the image outside the region of high-quality data is a function of the statistical
properties of the noise corrupting the image6 .

Let an estimated image be given by oe(x). Suppose that a region of this image is known, by some means
such as earlier photographs or computer modeling, with much higher (but not necessarily perfect) accuracy. Let
oP(x) denote this prior information, and let wp(x) be the binary support function defining this region.
Furthermore, let we(x) denote the binary support function for the complement of this region. Then the composite
image 6,(x)can be formed as follows:

6.(x) = we(x)oe(x) + wp(x)Op(x) (1)

Assuming that measured Fourier data is available, along with an estimate of its variance, it is now necessary to
determine the effect this prior knowledge has upon the quality of the constrained Fourier spectrum relative to the
measured spectrum. Fourier transforming Eq.(l) gives

6.(u)= iW()O(u-4)P+ JW )Op (uo -)d [J ()+

W.40 u4d! .- j j4)0ju4d 4

+ W.(4)0,, (u - 4)d4 - jWpi ()OP (u- 4)d4 + j[!Wpr (4)OPi(u- 4)dt + fW, (4)O, (u- 4 (2)

where the subscripts r and i refer to the real and imaginary parts of a complex quantity, respectively, and capital
letters denote Fourier transforms. To determine the change in quality of the constrained Fourier transform, it is

necessary to calculate the variances of the real and imaginary parts of Ok(u), since algorithms using this
constraint would seek to constrain the modified data to stay close to the measured data. This can be accomplished
in a straightforward although tedious way. To simplify matters, assume that the noises corrupting the high-quality
prior knowledge are uncorrelated with noises corrupting the measured data. Thus, cross-covariance terms are zero
and we get

var{06(u)} - <[6.(u)I2 >- < 6O(u)>2
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f f[W(A)w(0covarfo,(u - ),O.(u -C~ + W(A)W (ý)covar{O ,(u - 4),O F(u - 01j]idE

+ f [wO(4)wN(~covar.(u - 4),O.(u -01 + W; (4)Wp(0covarO i(u -4)OiUC

-2 fJ[w (4)We (00covar{ (u - 406O(u - Cl+ W (A)W.i (Ocovar{Op (u - ),O Pi(u - 01}1~dC

* (3)

In the case of high-quiality prior data, the covariance of this prior data is much less than the covariance of the
measured data. Thus ail the second covariance terms in the integrals are insignificant compared to the first, so
Eq.(3) can be rewritten as

var(6.(u)l - ff ()e(~v4.(-)O(-)dA

+ JW.(4)W(0covar{O (u - 4),O.9i(u - C01dCd

* 2 JJW %()WO(Ocovar{o e (U - ),O (U - 0}dIdA (4)

which is precisely the same result6 as is obtained if the ob~ject had support we(x). In the same way, the variance of
the imaginary part can be shown to be

var{Oai(u)) - f (4)W(C0covar{O Ci(u - 4),O0,(u - gd

+2f JWei(4)W. (Ccovar{O. (u - 4),O0.(u - C)AdCd 5

+ f0t%()ý .(-)O(-)dA 5
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which, again, is the same result as for an object with support constraint we(x). Thus, as long as the prior
knowledge is much less noisy than the measured data and its noise is uncorrelated with the measured data, using
the prior knowledge is effectively the same as applying a support constraint. As a result, all the previously
developed support theory6 applies. In particular, although the overall noise in the Fourier domain has decreased
since nose has been eliminated in the image domain, it is the behavior of the variances at each spatial frequency
that determines if noise reduction outside the region of prior knowledge can occur. All the noise reduction
achieved so far occurs only as a result of the noise removed from the prior knowledge area.

As for support, the prior knowledge must cause the variances in the constrained Fourier data to increase
beyond that of the measured Fourier data in order for noise reduction outside the prior knowledge region to occur.
As for the support theory6 , we will assume Fourier domain wide-sense stationary noise of the form

N,(u) a O.(u) - E{O1,(u)} (6)
Ni(u) a Oa(u)- E{Oi (u)}

where E{} denotes expected value and the complex noise (NrNi) is a stochastic process which satisfies

(Nr(ui)Nr(U 2 )) = Rr(Ui -u 2 )+Rr(u l +U2 )

(Ni(u,)Ni(u 2 )) = Ri(ul -U 2)-Ri(u1 +U 2 ) (7)

(Ni(u1 )N,(u 2)) = (N,(u1 )Ni(u 2 ))=0

The terms involving sums of spatial frequencies will be neglected since they only have an impact near dc. In
particular, for the computer simulation results in Section 3, the noise will be assumed to be gaussian and delta-
contlated in the Fourier domain, that is,

(N,(u,)N,(u 2 )) = ON(uI - U2)

(Ni(u-)Ii(U2)) = Oi31(Ul--U2 ) (8)

(Ni(u )N,(U2)) = (N,(u,)Ni(u 2))=o

3. Computer Sinmlation adsults
The algorithm used to enforce the prior knowledge constraints is the same as described in Ref 6; here,

only a summary will be given. The algorithm's steps are: (1) in the image domain, replace the measured data with
the prior knowledge in the region where prior knowledge is available, (2) Fourier transform, (3) if the real
(imaginary) part of the measured Fourier data is less noisy than the imaginary (real), replace the iterated real
(imaginary) part of the Fourier data with the measured data, but leave the imaginary (real) unchanged, (4) inverse
Fourier transform, and (5) go back to step (1) until noise is minimized outside the region of prior knowledge. As
discussed in Ref.6, this point of minimum noise will always occur prior to convergence of the algorithm as long as
the variances of both the real and imaginary parts of the measured Fourier data are nonzero.

The picture in Figure I is the true image used for demonstrating the effectiveness of high-quality prior
data. Figure 2 shows this picture corrupted with Fourier domain wide-sense stationary noise as in Eq.(8), with

a 2 / a? -.02 and an average signal-to-noise ratio (SNR) in the image domain of 1. The algorithm described above
was run for 20 iterations, and the prior knowledge was assumed to be perfect and in the lower right-hand quadrant
of the image. Because the noise is wide-sense stationary, the only error reduction predicted by theory is in the
asymmetric part of the support of the noisy data. Figure 3 shows the noisy image with the high-quality prior
knowledge inserted but before the algorithm has been run, and Figure 4 shows the resulting image after running
the algowithmL As can be seen, error reduction only occurred in the asymmetric part of the support of the noisy
data.
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Figure 1. True image

Figure 2. True image with noise added.
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Figure 3. Noisy mage with high-quality prior knowledge inserted.

Figure 4. Image after prior-knowledge is enforced
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Since the prior-knowledge constraint is effectively a support constraint, the theory developed in Ref.6 can be used
to predict the error reduction in the image at each step of the iteration. Figure 5 contains this comparison between
theory and computer simulation. Notice the close match between theory and simulation. Also, notice that the
point of minimum noise (at the 6th iteration) is barely discernible. This is due to the large mismatch between the
rea and imaginary variances. In addition, although it is not shown in Figure 5, the error in the symmetric part of
the measured data support remained unchanged, as predicted by theory.

Prior high-quality knowledge of part of an image is a generalization of support constraints, and can be
used to reduce the noise in the measured-data part of the image. The ability of prior knowledge to reduce noise
outside the region of prior knowledge depends upon the noise correlation properties.

This research was funded by a grant from the U.S. Air Force Office of Scientific Research, Bolling AFB,
Washington, D.C.
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Noise reduction in adaptive optics imagery with the use of support constraints

Charles L. Matson
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Abstract

The use of support constraints for noise reduction in images obtained with telescopes that use adaptive optics for
atmospheric correction is discussed in this paper. Noise covariances are derived for this type of data, including the
effects of shot noise and CCD read noise. The effectiveness of support constraints in achieving noise reduction is
discussed in terms of these noise properties and in terms of the type of algorithms used to enforce the support
constraiw Both a convex projections and a cost function minimization algorithm are used to enforce the support
constraints, and it is shown via computer simulation and field data that the cost function algorithm results in
artifacts in the reconstructions. The convex projections algorithms produced mean square error decreases in the
image domain of approximately 10% for high light levels, but essentially no error decreases for low light levels.
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Atmospheric turbulence has long been recognized as the linuung factor in ground-based telescope
resoluon. Wavdrot sensing and adaptive optics have been proposed as a method to lessen the impact of

speric buce distortiol, 2 . This approach has indeed been successful in generating substantially higher
resolution from ground-based telescopes than otherwise achievable" 5 . However, despite the method of image
reconstruction and amount of image quality, the use of additional information beyond that of the measured data to
improve image quality has been pursued for many decades6"8. One particular type of additional information,
support constraints, has long been recognized as a means to superresolve data in the Fourier domain beyond the
measurement region9 "12. Rcently13I 4, it has been shown that support constraints provide a means to improve
the quality of the measured data itself in addition to providing a means for superresolution. The ability to improve
the measured data has been shown to be a function of the statistical properties of the noise corrupting the measured
data. In this paper, this recent theory is applied to imagery obtained from telescopes employing adaptive optics for
atmospheric correction. The outline of the paper is as follows: the necessary statistical properties of the measured
data noise are derived in Section 2, and the algorithms used to enforce support constraints are described in Section
3. Section 4 contains results from both computer simulations and field data, and Section 5 contains the
conclusions.

2. Nie Covariais in Adaptive )pm"sInageiv
It has been previously shownl3,14 that the noise correlation properties in measured data are key to

determining how effective support constraints can be in accomplishing noise reduction in images. Therefore, in
this section, the noise covariances will be derived for adaptive optical imagery. The three noise sources considered
are photon noise, CCD read noise, and noise resulting from imperfect atmospheric distortion removal by the
ada optic system

The detected image, d(x), is given by

d(x) = 8(x- Xk)+n= (X)
k-I

where K is the number of detected photons and the effects of spatial integration due to finite detector size are
neglected. The noise term ntD(x) is assumed to be zero mean and delta-cor-elated with variance r(x). This
corresponds to idealized CCD read noise with the flat-fielding and bias removal already accomplished. The
Fourier transform of d(x), D(u), is given by

K

D(u) = e-j2•x +NccD(u) (2)
kai

It is straightforward to show that the expected value of D(u), E{D(u)}, is given by

E{D(u)} = KO.(u)H-(u) (3)

where K is the average photons per frame, On(u) is the true object Fourier spectrum normalized to one at dc, and
11(u) is the average optical transfer function of the atmosphere and telescope with adaptive optics and is real 15.

The covariances of the real and imaginary parts of D(u), as well as the cross-correlation between the real
and imaginary parts, will now be derived, as these are the specific statistical expressions needed for predicting the
performance of the deconvolution algorithms. Let the subscripts r and i denote the real and imaginary parts of a
complex quantity, respectively. Then

covar{Dr (u), D, (v)} = E•Dr (u)Dr (v)} - E{Dr (u)}E{Dr (v)1
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-- E{ Kcs27truxk Kcos(2xvxm) + E{N CC(u)NccD, (V)} - K2H(u)H(v)O. (u)O, (v) (4)

covarDi(u),Di(v) = E{D1(u)D1(v) - E{Di(u)}E{Di(v)}

=E E{Xin(21Wxkx sin(2xvxi,)} + E{NcCD (u)NccD (v)}- K2H(u)H(v)Om (u)Om (v) (5)
Sk-! Mal

covar{D,(u),D1 (v)} = ED,(u)D1 (v)} -E{Dr(u)}E{Di (v)}

=E{ cos(2wuxk 2xvx. +E{Ncc- (u)Nc (v (v)}-R3H(u)H(v)Onr(u)Om(v) (6)

where the equalities are obtained by noting that the CCD read noises are independent of all other noise sources.
Following standard covariance calculation methodsl 6,17, it can be shown that

covar{D(u),KD, (v)O U . (u-v)o (u-v), +O (u + vK)HO(uO +v)+oR N i(u uv)+1R, N(u +V)
22 2

+K2 O. (u)O. (v)covar{NA, (u), NAo, (v)} + R'06 (u)Om (v)covar{NAo• (u), NAxo (v)} (7)

covarl~~i _u i(vl ( v)•(u_- v)+-_U,, (u + v)H•(u + v)_l.1R,.(u_- v)+-l-R,.(u +v)covar{D1 (u),Di (v)} =--- O (u-vH 2)-O 2~ v

22 2 2

+RO~ (u)O,,i (v )covar{NA0, (u), NA(, (v)} +K2'Of (u)Off (v )covar{NA~j (u), NAi (v)} (8)

covar{Dr (u), Di(v)l K -0m(u - v)H-(u - v) + -0~(u + v)ýH(u + v) - -1Ri(u - v) + -1Ri(u +v)
2 2 2 2

+K20i (u)On (v)covar{NAo, (u), NAo (v)}- K2Oni (u)O, (v)covar{NAo (u), NAO (v)} (9)

where R(u) is the Fourier transforn of r(x), and NAO(u) is the noise associated with the imperfect adaptive optics
(AO) correction. Used in the derivation of Eqs.(7)-(9) is the fact that the real and imaginary parts of NA are
uncorrelated. The first two terms in Eqs.(7)-(9) are due to photon noise, the second two terms are due to CCD read
noise, and the last two terms are due to AO noise. No closed form expression is available for NAo. However,
accurate computer simulations 3 can be used to determine the structure of the variances and covariances of NAO for
desired telescope/ro/AO combinations. For the computer simulations discussed in this paper, two combinations
were utilized. The first combination assumes D/ro =5, one actuator per ro cell, and a one meter unobscured
aperture. The second combination assumes DIro =16, one actuator per ro cell, and a 1.6 meter obscured aperture.
This combination is a model of the 1.6 meter compensated telescope at the Air Force Maui Optical Station
(AMOS). Radially averaged variances of NAo for the first and second combinations are shown in Figure 1. Notice
that there is a marked dissimilarity in the magnitudes of the noises for most spatial frequencies. This dissimilarity
implies the possibility of noise reduction with the use of support constraints'1, but in fact this does not occur, as
will be shown in the next section. This is due to the fact that the correlation of the noises, as well as their relative
magnitudes, determine the ability of support constraints to cause error reduction 13,14. The correlation coefficients
of the covariances can be seen in Figure 2. This plot is for the first combination and assumes that the correlation
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Noise Variances in Adoptive Optics
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Figure 1. Adaptive optics noise variances. Curves (1) and (2) are the radially-averaged real and imaginary noise
variances for combination I described in the text, respectively, while curves (3) and (4) are the radially-averaged
real and imaginary noise variances for combination 2.
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Figure 2. Adaptive optics noise correlation coefficients for combination 1. The solid line is a plot of the
compensated OTF, while the triangles are computer simulation points for the real correlation coefficients and the
asterisks are computer simulation points for the imaginary correlation coefficients.
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coefficients are independent of location and orientation, which is a simplifying assumption. Also plotted with the
correlation coefficients is the OTF of the atmosphere/telescope combination. The inverse Fourier transform of the
OTF is essentially finite in extent and this finite extent enforces correlation among the noises in the Fourier
domain. As expected, the shape of the OTF provides a lower limit to the correlation of the adaptive optics noise.
Notice that the real part of the noises are much more correlated than the imaginary parts of the noise. The large
amount of correlation is the determining factor in the amount of noise reduction achievable using support
constraints. Because the noises are so highly correlated, the covariances in Eqs.(7)-(9) can be approximated by
their variances, which results in

covar{D, (u),D, (v)1 - KO. (u- v)H(u- v) + o (u +v)H(u + v) +IRr(u- v) +-R,(u +v)
2 2 2 2

+K 20O. (u)O. (v)var{NAD, (u)} +RK20i (u)Oi(v)var{NAOi(u)} (10)

0covar{Di(u),Di(v)1 in-0 (u-v)H-(u-v)--0 .(u+v)H-(u-.v)+!R,(u-v)--!R(u +v)
2 2 2 2

+K2Oni (u)Oi (v)var{NAor (u)} +K 20 (u)O., (v)var{NAoi (u)) (11)

* covar{Dr(u),Di(v)l - - KOm (u- v)H(u- v) + O (u + v)H(u + v)- -Ri(u- v) +-Ri(u + v)
2 2 2 2

+K 20f(u)Oin(v )var{NAO, (u)} -
20mi(u)0,,(v)var{NA~ (u)1 (12)

3. Algorithm Description and Performance Prediction
In this section, the two algorithms used to enforce support constraints in the deconvolution process will be

described. Predictions of their performance will also be analyzed in terms of the noise correlation properties
developed in the previous section. It is assumed that an unbiased estimate of the true Fourier data exists, along
with an unbiased estimate of the variances of the estimate of the mean. It is also assumed that the estimated
Fourier data exists only in a finite region. For the results in this paper, it is assumed that this region is roughly
centered at dc and the outer limits are determined either by a low-pass filter such as a telescope causes (in the
infinite signal-to-noise (SNR) case) or the outer limits a-,e determined by the SNR of the data becoming sufficiently
small that only noise exists outside these limits. However, these results are easily generalized to the case where a
number of finite regions of Fourier data are measured such as in interferometry.

Convex rjecions
The first algorithm to be described is a convex projections approach 18 -2 0 . The steps of the algorithm are

as follows: (1) apply support constraints in the image domain, (2) Fourier transform the support-constrained data,
(3) modify the support-constrained Fourier data so that it stays within a ±2o region about the measured mean
where measured data is available, and constrain the magnitude of the support-constrained data to stay near zero
outside of this region, (4) inverse Fourier transform the data, (5) go to step 1 and continue until the image changes
are insignificant. The most important conceptual step in this algorithm is step (3). If, after applying support
constraints, the support-constrained Fourier data is within the ±2o measured data region, support constraints
cannot change the noise properties in the image domain inside the support constraint because no changes can be
made in the Fourier domain. Therefore, the key to the usefulness of support constraints is the effect they have
upon the iterated Fourier data. To analyze this further, let Os(u) be the iterated Fourier data after one application
of support constraints. Following the development in Ref. 14, the variance of the real and imaginary parts of Os(u)
are given by
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var(O.(u)) = JfW )W)(ý)F(u,- -)F(u- C)cova4{D(u - 4),D,(u- -)]dA

+ JfW1 (4)W,(ý)F(u - )F(u - )covar{Di(u - ),Di(u - 01dW

- 2 fJ W,' (4)Wj (C)F(u - 4)F(u - C)covartlD1(u - 4), D i(u - O)WC4 (13)

and

var{01,,(u)) =fWr (4)Wr(ý)F(u - 4)F(u - C)covar D, (u - 4), D (u - 01dCd

* fjWi (4)Wi (C)F(u - 4)F(u -)covarDr(U - 4),Dr(U - C)Wdý

+ 2 JJW, (4)W,(C)F(u - 4)F(u - ý)covar({D(u - 4),Dr (u - C)Jd (14)

where F(u) is a real filter which deconvolves out H(u) and filters the resulting Fourier spectrum to minimize the
noise amplification effects, and W(u) is the Fourier transform of the support constraint w(x). It is necessary to
insert Eqs.(10)-(12) into Eqs.(13) and (14) to analyze the variances further. This will be done for two limiting
cases: high light level and low fight level.

In the high light level case (infinite SNR), the last two terms in Eqs.(10)-(12) dominate the covariances.
Substituting these equations with this simplification into Eq.(13) gives

varB.{O.(u)} - K2F2(u)var{NAo (u)} JffW ()W (V)00 (u - 4)0(u- AA

+R2F2 (u)var[NA~,, (u)} JJ Wr (w)r (00.i (u - W)O. (u - Cdd
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K2 F2 (u)var{NAa (u)} Jf WA (4)W, ()O. (u - 4)O (u- -)dtdC

*+R 2 F 2 (u)var{NA~j (u)} JfWMý()W (0)O (u - 00. (u - CA

-2K
2 F2(u)var{NA,( (u)} fJfwr ()W (00)O(u - 4)O.i(u -CA

* -a,

+ 2K2F2 (u)var{NA~ (u)} Wf W(4)Wý (C)O. (u - 4)0. (u - C~~d (15)

where F(u) is assumed approximately constant in the region where the integrands of Eq.(15) are significantly
nonzero. This approximation is reasonably valid where the object is significantly larger than the width of the
inverse Fourier transorm of F(u), which should be the case when the object is well-resolved by the telescope.
Furthermore, the integrals in Eq.(15) are multiplications of convolutions which can be simplified to obtain

varm {0. (u)) - F2(u)[K202 (u)var{NAo, (u)}+K 2 02. (u)var{NAoj (u)1J (16)

where the term in the square brackets is seen, by Eq.(10), to be the variance of the real part of the measured
Fourier data, and thus Eq.(16) reflects the starting variance of the real part of the measured data scaled by the filter
F(u). In the same way, it can be shown that

varmL (Os, (u)) - F2 (u)[k202., (u)var{NA~r (u)}+7K2O2(u) Yrar{NA~ (u)] (17)

which is the starting variance of the imaginary part of the measured data scaled by F(u), as well. As a result, the
variances of the support-constrained Fourier data are, on average, the same as the variances of the measured
Fourier data. This means that most of the support-constrained Fourier spectrum will reside inside the ±2a region
and thus the application of support constraints will not have much effect on noise reduction inside the support
constraint due to the inability of the measured data to act as an effective constraint. The reason that support
constraints do not allow noise reduction is that the noises are too correlated, which results from var{NAo• (u)},

var{NAot (u)}, and F(u) being essentially constant where the integrands are significantly nonzero, which is only an
aproximation. As a result, some variance modification can occur as a result of support constraints since these
terms are not exactly constant as previously assumed. However, although the terms are not exactly constant, they
are still closely approximated by a constant, so not much noise reduction is expected in this case. Looking again at

Figure 1, it can be seen that, in some regions, var{NAot (u)) and var{NAo, (u)} are changing quite rapidly. Thus
some noise reduction in images due to the constraining of the support-constrained Fourier data to remain in the
measured data ±2a region should occur, but probably not much. In addition, this result assumes that the region of
integration where the integrand is significantly nonzero is contained inside the region of measured data. However,
in regions near the edge of the measured data, the zeros representing the non-measured data will be correlated in
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via the integrals in Eqs.(13) and (14), and thus the variances of the support-constrained Fourier data will become
significantly worse near the data region edges, in general. Although this does not improve the quality of the
measured Fourier data, it extends the measured data out into regions where no data was measured. This is the
essence of superresolution.

Consider now the low light level case, where photon noise dominates and CCD read noise is not an issue.
Then the first two terms in Eqs.(lO)-(12) are dominant and, looking at the variances of the real part of the support-
constrained Fourier data, Eq.(13) becomes

VarLL O0.(U)) _ .F2 (U) JJ(.W( C)(-4)H(C- 4)+O (2u-C j(2--4Jd

*~~~ + F fu iWA()WA(4  M ~~)~.

2

+ RF 2 (u) JJW ())Wi(HJOn(•_g)H(_ O _ (2u-_-4)]dd (18)

The first term in the brackets in the integrands of Eq.(18) is a function only of the difference in spatial frequencies.
Without the filter F(u) effects or the second terms in the brackets (which are only significant near dc) the noise
model would fit the wide-sense stationary model assumed in Rd. 14 and the variances of the real and imaginary
parts of the measured data would be equal. It has been shownl 4 that this type of noise results in no noise
reduction, and even a slight noise increase inside the support constraint. For Eq.(18), because of the term F(u) and
the second terms in the brackets in Eq.(18), noise reduction may be possible, but if noise reduction is achieved not
much is expected se the noises are essentially wide-sense stationary. Of course, near the edge of the measured
data region, the variances of the support-constrained Fourier data will be affected quite a bit because of the zeros
outside the measured data region, so superresolution is possible because of this as for the high-light level case.
Overall, less noise reduction is expected for the low-light level case than for the high-light level case since the real
and imagimary variances are essentially identical away from dc, but large amounts of noise reduction in either case
are not expected. The same functional dependence is seen in the variances of the imaginary part of the support-
constrained Fourier data as well, so the same conclusions apply.

The situation where CCD read noise dominates is essentially identical to the case where shot noise
dominates, so not much noise reduction is expected in this limit, as well.

One final issue with the convex projections approach is that the ±2a region in the Fourier domain will, in
general, not be the true ±2a region since it is created from measured data. As a result, errors in creating this
region should result in less noise reduction than what would occur with an accurate ±2a region.

cost F oMiJimizain
The second algorithm used to enforce support constraints is a cost function minimization approach. The

cost function minimized is given by

cost function [O.(u) -F(u)Di (u)]2 + }C0$t•L1•tin • ' [ 2(ti)0.2(U) F2(U)(y2.(U)
dw r4o F +C I
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+ Oru+ u) (19)

where the a2(u) and o2(u) terms are the variances of the real and imaginary parts of the measured Fourier data,

respectively, and the minimization is over all object Fourier spectra Os. The first two summations are the data

matching terms, while the third is the regularization term. The parameters 1/ a2 and 1/W2 act as regularization

parameters and are calculated by setting oa and o2 equal to the average variances of the real and imaginary parts

of the measured Fourier spectrum, respectively, at the edge of the data matching region. The cost function is
minimized by using a conjugate gradient minimization approach.

The cost function minimization approach should have a performance similar to the convex projections
approach with one major exception. Because no "hard edges" are established by the cost function for the region in
the Fourier domain where the support-constrained Fourier data must remain as the minimization proceeds, the
correlation of the zeros outside of the measured data region into the measured data region can significantly modify
the measured Fourier data. This results in much worse performance for the cost function approach as compared to
the convex projections approach.

4. Alorithm PerformanM e
The computer simulation runs presented in this section were accomplished using a highly accurate

simulation which models the effects of atmosphere, telescope, adaptive optics, photon noise, and CCD read noise3 .
Because the noise effects for both CCD read noise and photon noise are structurally similar, CCD read noise was
not included in the simulations. The computer simulation was used to obtain both images and point source
corrections. Sample means and sample variances were calculated and used in the deconvolution algorithms.

Both algorithms were run for a variety of true objects using the two telescope/AO combinations discussed
in Section 3. For each true object, both a high and a low light level case was run. For each computer simulation
run, a filter F(u) was chosen as follows:

F(u)= H(u) (20)

where the Fourier transform of the circle function was chosen in order that a finite support could be applied in a
way consistent with the ±2a region in the Fourier domain. The size of the circle was chosen such that the first
zero of its Fourier transform was located just outside the region of accurately measured Fourier data. Thus most of
the energy in the filter was located in the region in Fourier space where measured data was available. This was
done since it has been shownl 3 that very little superresolution is achievable for data with moderate SNRs and so
most of the emphasis in the algorithm was placed upon improving the quality of the measured data and not

superresolution. The true object's Fourier spectrum was also multiplied by J(circ) and the mean square error

between the blurred true object and the deconvolved support-constrained object was calculated at each iteration of
the algorithm. This approach follows that of Lannes 2 I, where the amount of achievable superresolution is
approximately determined before the deconvolution process is started, and the measured data is modified by a filter
to be consistent with this amount of superresolution.

A number of interesting results were seen from the computer simulation runs. The first is that the cost
function minimization algorithm consistently produced deconvolved images which had noticeable artifacts. In
general, the mean square error in the image increased after deconvolution with this 01 oorithm, but in one case
severe artifacts were seen in the reconstruction even though the mean square erre image decreased. The
problem appears to be the inability of the algorithm to enforce hard limits on the • Fourier data to stay
within the ±2a region at the boundaries of the measured data. Later in this section results will be shown which
demonstrate this problem.
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The convex projections algorithm, in general, resulted in decreased noise levels in the image. The high
light level scenario resulted in the most noise reduction, as expected, and noise levels never increased as a result of
support constraints. The average mean square error reduction in the image was approximately 10%. In the low
light level scenario, on average, no reduction in noise occurred. Sometimes the noise slightly increased and
sometimes the noise slightly decreased. This also is consistent with expectations from the theory in Section 3.
Two different forms of the convex projections algorithm were used. The first allowed superresolution to occur,
while the second explicitly zeroed out extrapolated data and required the iterated Fourier data near the edge of the
measured data region to exactly match the measured data. In general, the algorithm which allowed superresolution
to occur resulted in noisier image reconstructions. This also was expected since superresolution is an inherently
noisy process 13.-

Two computer simulation results will now be discussed in detail. The first run used the second
telescope/adaptive optics combination which is a realistic model of the AMOS compensated 1.6m telescope. The
true object was a Voyager picture of Dione, a moon of Saturn. A high light level case was run with 1010 photons
per frame. This resulted in Fourier data which had SNRs of well over 10 for all spatial frequencies except those at
the extreme edge of the telescope transfer function. The measured data was truncated at where the SNR
approached one. One hundred iterations of both the convex projection algorithm and the cost function algorithm
were run. The convex projections algorithm was run twice. The second time, in the Fourier domain the support-
constrained data was zeroed out outside of the measured region on each iteration. In addition, in an annulus
region 15 pixels wide at the edge of the measured Fourier data, the support-constrained Fourier data was replaced
with the measured data. This second approach to convex projections was accomplished to keep the correlation of
the zeros outside of the measured data from propagating inwards and corrupting the measured data. Thus the
image domain errors for this case reflect only the changes in the measured Fourier data region and no
superresolution is achieved at all.

Figure 3 shows the error in the Dione reconstructions as a function of iteration number for both convex
projection algorithms and the cost fumtion algorithm. Notice that the error dramatically increases for the cost
function algorithm, while both convex projections algorithms result in reduced noise. The convex projection
algorithm which explicitly prevents any superresolution from occurring has lower noise levels than for the one
which allows some superresolution to occur. This is not surprising, since it has
been shown that any superresolution in the Fourier data is much noisier than the measured data 13 . The true
blurred image, the linear deconvolution image with no support constraints, and the images resulting from the
convex projections and cost function algorithms are shown in Figure 4. The images all look very similar.
Although it does not reproduce well on paper, the cost function reconstruction has a series of concentric rings near
the edge of Dione's horizon which are artifacts no .,,.. wmed in the true image. Thus the increase in noise shown
in Figure 3 is not just a generalized noise increase T' result of specific artifacts. To analyze this effect further,
slices of the magnitude of the reconstucted Fourier •p-tra were plotted and compared to the true Fourier
spectrum. The results are shown in Figure 5. Notice that the cost function reconstruction is much noisier than the
convex projections reconstruction near the edge of the measured data region, with the error decreasing as spatial
frequency is decreased. This is consistent with the explanation given in Section 3, that the cost function algorithm
doesn't prevent the zeros outside the data region from strongly affecting the measured Fourier data near the region
boundary.

The convex projection reconstruction doesn't have any dramatic improvement in image quality.
Apparently, the algorithm resulted in lower noise levels throughout the image, but even the achieved mean square
error reduction of 35% did not produce dramatic image improvements.

The low light level computer simulation run for Dione used all the same parameters as for the high light
level case except that 104 photons per frame were utilized. The error in the image reconstructions as a function of
the iteration number are shown in Figure 6. Notice that all the reconstructions are more noisy than at the start, but
the cost function algorithm again has the most noise.
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Error in Dione Reconstructions
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Figure 3. Mean square error in the bione reconstructions for 1010 photons/frame. The solid line is from the cost
function nminmization algorditm, the dashed line is from the convex projections algorithm with superresolution,
and the dotted line is from the convex projections algorithm with no superresolution.
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Figure 4. Dione images: blurred true image, linear deconvolution reconstruction, and reconstructions using the
cost fuinction and convex projection algorithms.
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Dione Fourier Domain Slices
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Figure 5. Normalized Dione Fourier domain slices: solid line is from the true blurred Dione spectrum, dashed line
is from cost function reconsmtuction, dotted line is from the linear reconstruction, and the dot-dash line is from the
convex projections reconstruction.
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Figure 6. Mean square error in the Dione reconstructions for 104 photonst/fir . The solid line is from the cost
function minimization algorithm, the dashed line is from the convex projections algorithm with superresolution,
and the dotted line is from the convex projections algorithm with no superresolution.
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The next simulation results are for a satellite model. The first combination of telescope/AO was used for
this simulation. The high light level case utilized 108 photons per frame. The errors in the reconstructions for the
cost function algorithm and the two implementations of the convex projections algorithms are show in Figure 7.
Notice that there is essentially no noise reduction with the convex projections algorithms. However, notice that the
cost function algorithm indicates a large decrease in error in the image. This indication of error reduction is
misleading, as can be seen in the image reconstruction in Figure 8. Notice that cost function algorithm
reconstruction took dim parts of the object and obliterated them, concentrating the energy from these regions into
smaller, higher intensity regions. Two important conclusions result from this observation. The first is that a mean
square image error metric is only useful in as far as it reflects overall noise decrease in the image. It does not
indicate the presence of artifacts. The second conclusion is about the concentration of energy from spread out dim
regions of the image into smaller, brighter regions. For an extended object such as a satellite, the error this causes
is plain. However, it is precisely this type of behavior that is used to claim superresolution in images which consist
of a number of point sources! As a result, many claims of superresolution in the literature may reflect this sort of
artifact generation, rather than true superresolution.

Fourier domain slices of the true blurred image and the reconstructions are shown in Figure 9. The point
source used to deconvolve out the telescopelAO effects was modeled as slightly inaccurate, as is the case for most
field data, so the noise is not zero mean. As a result, interpreting the error in the cost function reconstruction slice
isn't as obvious as for the Dione case. However, it can be =n that the cost function reconstruction slice of the
Fourier data is significantly different from the true object slice and the convex projections reconstruction slices.

Error in Oceonr Reconstructions
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Figure 7. Mean square error in the satellite reconstructions for 108 photons/frame. The solid line is from the cost
function minimization algorithm, the dashed line is from the convex projections algorithm with superresolution,
and the dotted line is from the convex projections algorithm with no superresolution.
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Figure . Satellite images: blurred true image, linear deconvolution reconstruction, and reconstructions using the
* cost finoction and convex projection algorithms.
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1 Figure 9. Normalized satellite Fourier domain slices: solid line is from the true blurred satellite spectrum, dashed
line is from. cost funiction reconstruction, dotted line is fromi the linear reconstruction, and the dot-dash line is from
the convex projections reconstruction.
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The low light level simulation run for this satellite model is the same as for the high light level case
except that 104 photons per frame were utilized. The errors in the reconstructions are shown in Figure 10, and it
can be seen that the convex projections algorithms again did not result in noise reduction, while the cost function
algorithm indicates a small amount of decrease. The cost function algorithm terminated after 60+ iterations
because the cost function had stopped decreasing.

Finally, the two algorithms were run using field data collected from the AMOS 1.6m telescope. The first
image reduced was Ganymede. The reconstructions were in the low light level case since the SNR of the data
approached one at approximately 20% of the diffraction limit. Thus large amounts of image improvement are not
expected. The reconstnctions are shown in Figure 11, where an additional convex projections algorithm was run
using positivity as well as support as a constraint. The linear deconvolution result shows the presence of what is
probably the region Galileo Regio in the right-central part of the image. The size of this feature is consistent with
images obtained from the Voyager probes. The cost function reconstruction shows the same sort of artifacts as
seen in the satellite reconstructions of Figure 8. The dim regions of the moon have energy taken away from them
and added to the bright part of the moon. This results in the reconstruction of the region Galileo Regio increasing
in size, and the overall moon diameter decreasing.

The convex projections reconstruction shows small differences between it and the linear reconstruction
image. From the computer simulations, this may or may not be more accurate than the linear reconstruction since,
in the low light level cases, noise levels both increased slightly and decreased slightly. In addition, a convex
projections reconstruction was accomplished using both support and positivity. The differences between the
reconstructions with positivity and without positivity are negligible.

Error in Oceanr Reconstructions
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Figure 10. Mean square error in the satellite reconstructions for 108 photons/frame. The solid line is from the cost
function minimization algorithm, the dashed line is from the convex projections algorithm with superresolution,
and the dotted line is from the convex projections algorithm with no superresolution.
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Figure 11. Image reconstructions of Ganymede: Linear deconvolution reconstruction, cost fuinction
reconstruction, and convex projections reconstructions with and without positivity.

Linear Deconvolution CF Support
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Figure 12. Imiage reconstructions of the Hubble space telescope: Linear deconvolution reconstruction, cost
function reconstruction, and convex projections rcstutons with and without positivity.
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The second field data image to be reduced is an image of the Hubble space telescope. The reconstnrctions
are shown in Figure 12. As for Ganymede, both convex projections algorithms are very similar to the linear
deconvolution image. The cost function reconstruction again shows energy being taken from the dim regions and
moved towards the brighter regions. This is especially apparent on the
solar panels. In addition, the brightly reflecting region on the upper solar panel where the support attaches the
solar panel to the main body is diffused out in the cost function reconstruction. Since the size of the attachment is
known to be smaller than the cost function reconstruction indicates, this shows more artifact generation.

Support constraints resulted in approximately 10% decreases in mean square error, on average, in the
image domain for imagery collected on adaptive optically corrected telescopes for the two combinations considered
here in the high light level situation for resolved images. For low light levels, on average no mean square error
decreases were obtained. Since most astronomical and space objects will reslt in low light levels, this indicates
that support constraints will provide only marginal improvement at best ui adaptive optics data. A convex
projections algorithm should be used to implement the support coustraints if such constraints are applied since the
cost function approach is more susceptible to artifact generation. This could be combated by excessively weighting
the cost function for data points uma, the edge of the measured data region. However, the convex projections
algorithm is quick and appareudy not error-mrone, so it appears to be the algorithm of choice for enforcing support
constraints.

This research was funded by a grant from the U.S. Air Force Office of Scientific Research, Bolling Air
Force Base, Washington, D.C. The authors wish to thank Marsha Fox and her field experiment team for providing
the data used in the Ganymede and Hubble telescope reconstructions.
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